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ABSTRACT 

 

 This paper describes research into the application of Model-Based Systems 
Engineering (MBSE) tools and processes to Risk-Informed Design (RID).  RID enables 
system risk analyses early in the lifecycle of spaceflight projects allowing designers to 
use risk as a design commodity and part of the overall trade space. RID uses a 
“minimum functionality” approach, whereby a minimal, single-string system design is 
first envisioned that only meets basic performance requirements without any regard to 
overall reliability or safety. Risk analyses are then used to apply informed design 
enhancements based on their contribution to risk reduction. A recent application of RID 
was the Altair Lunar Lander Project that was intended for human lunar exploration 
under NASA’s Constellation Program. The Altair project’s approach and results are 
reviewed and analyzed in this paper as a specific application of RID. In traditional 
projects, several tools such as Relex, Windchill or SAPHIRE, are used in parallel to 
apply risk informed design techniques. These analyses also traditionally occur later in 
the design cycle when changes are more difficult to implement. Safety and reliability 
analyses typically have no direct connection with the system architecture model, which 
accurately depicts the physical and functional constructs of a system, including the 
“ilities”. The model is directly impacted by the results of the analyses. This creates a 
time-consuming iterative process of analyses and modification because of the need to 
integrate several tools and teams. To improve this process, the research described here 
investigated the use of a single, cloud-based MBSE CAD tool called Innoslate that 
integrates failure analysis into the system architecture model. The specific focus of the 
research was on the analysis of system failure events through the use of a system 
architecture-modeling tool and the establishment of an MBSE process that enables 
system engineers to make risk-informed system modifications during development. The 
conclusion of the research was that MBSE in general, and Innoslate specifically, is 
capable of providing an integrated, effective and quantitative means of developing a 
risk-informed system design using a minimum functionality baseline process. This can 
be applied to human and robotic spaceflight systems and other systems with similar 
complexity. The research demonstrated that random distributions could be added to 
failure probabilities in order to add “noise” to the results, a task that can be laborious, if 
not impossible, if performed using a calculator or spreadsheet. The research also 
demonstrated an end-to-end MBSE process that was applied to a basic system model 
and the Altair Project. Recommendations for future work conclude the paper. 
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Application of MBSE to Risk-Informed Design Methods  
for Space Mission Applications 

 
“Science is a way to teach how something gets to be known. In as much as anything 
can be known, because nothing is known absolutely. It’s how to handle doubt and 
uncertainty. Science teaches us what the rules of evidence are. We mess with that at 
our peril." – Richard P. Feynman1 

 
INTRODUCTION 

 Legacy and modern systems for human and robotic space missions are often 

comprised of many intricate parts that must work harmoniously to accomplish a mission. 

Standing at 184 feet and weighing over 4.5 million pounds at launch, NASA’s Space 

Shuttle was composed of over 2.5 million parts, including the Orbiter, External Tank and 

Twin Solid Rocket Boosters.2 Despite the arduous effort to avoid the loss of a mission or 

crewmember, 2 of the 5 operational orbiters were lost along with their fearless crew.  

 Engineers today are shouldered with the challenge and responsibility of 

preventing these accidents from occurring through robust and evolving engineering 

practices. Risk Management (RM) is an important function to perform throughout the 

lifecycle of any mission that has “repeatedly proven capable of uncovering design and 

operational weaknesses that had escaped even some of the best deterministic safety 

and engineering experts.”3 However, system engineers often lack the necessary tools to 

perform quantitative risk assessments early in a mission life cycle when the design is 

very flexible and adept to changes. The growing practice of Model-Based Systems 

Engineering (MBSE), an object-oriented method of system modeling, offers an 

opportunity for system engineers to implement risk assessments without the need of a 
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large design team or very advanced reliability software. This paper describes research 

into the application of MBSE tools and processes to Risk-Informed Design (RID).   

 RID enables system risk analyses early in the lifecycle of spaceflight projects 

allowing designers to use risk as a design commodity and part of the overall trade 

space. RID uses a “minimum functionality” approach, whereby a minimal, single-string 

system design is first envisioned that only meets basic performance requirements 

without any regard to overall reliability or safety. Risk analyses are then used to apply 

informed design enhancements based on their contribution to risk reduction. A recent 

application of RID was the Altair Lunar Lander Project that was intended for human 

lunar exploration under NASA’s Constellation Program. The Altair project’s approach 

and results are reviewed and analyzed in this paper as a specific application of RID.  

 Unfortunately, these analyses traditionally occur later in the design cycle when 

changes are more difficult to implement. Safety and reliability analyses typically have no 

direct connection with the system architecture model, which accurately depicts the 

physical and functional constructs of a system, including the “ilities”. The model is 

directly impacted by the results of the analyses. This creates a time-consuming iterative 

process of analyses and modification because of the need to integrate several tools and 

teams. To improve this process, this paper investigated the use of a single, cloud-based 

MBSE CAD tool called Innoslate that integrates failure analysis capabilities into the 

system architecture model. The specific focus of the research is on the analysis of 

system failure events through the use of a system architecture-modeling tool and the 

establishment of an MBSE process that enables system engineers to make risk-

informed system modifications during design and development.  



  Perez 8 

BACKGROUND REVIEW 

 This research paper is first and foremost about the leveraging of Model-Based 

System Engineering (MBSE) methods to enhance Risk-Informed Design (RID) methods. 

According to the International Council On Systems Engineering (INCOSE), MBSE is the 

“formalized application of modeling to support system requirements, design, analysis, 

verification and validation activities beginning in the conceptual design phase and 

continuing throughout development and later life cycle phases.”4 It is an integrated, 

object-oriented and model-centric approach that enhances the system engineering 

experience to efficiently manage moderate to complex systems that is particularly useful 

for spaceflight programs. Traditional engineering methods use a document-centric 

approach in which the constructs of a system are defined by physical and/or electronic 

documentation. Many of these documents are products of a large variety of engineering 

CAD tools. Table 1 highlights some of the major differences between a document-

centric and a model-centric approach adopted from a Vitech Corporation seminar on 

MBSE.5 

 MBSE tools can capture a wide range of system artifacts from system 

requirements and CONOPS to test plans and mission scenarios, including timelines. 

Engineers across multiple disciplines can use a single tool to track the development of a 

system. As long as the same system-modeling tool is used, engineers will have access 

to the latest system updates. This leaves less room for error and reduces risks. 

Although MBSE is a relatively new concept that is gaining more attention from the 

systems engineering community, RID has been in practice over many decades.  
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Document-Centric Model-Centric 

Documents are physically collected Documents derived from a single model 

Drawings are independent of each other Views are consistent with each other 

Diagrams exhibit static behavior  Diagrams exhibit executable and dynamic 
behavior 

Data is stored across multiple locations 
and mediums Data is stored in a linked repository 

System views are stored  System views are dynamically generated 

Process is ad hoc with inconsistent results Process is repeatable with consistent 
results 

Changes are manually propagated across 
all affected system items 

Changes are automatically propagated 
across all affected system items 

 

Table 1. Document-Centric Versus Model-Centric System Engineering6 

 

 RID is a conscious engineering effort to buy down risks on a system by making 

informed design trades during system design and throughout the lifecycle.7 It assumes 

risk is a design commodity to be traded -- similar to mass, thrust, size or power -- rather 

than a result of the design.8 Risk is often thought of in three components: scenarios, 

likelihoods and consequences.9 Risk can also be broken down quantitatively into a 

probabilistic value as a success or failure criteria. For spaceflight missions, there is 

special interest in understanding the probability of the loss of crew (pLOC), loss of 

mission (pLOM) and/or loss of vehicle (pLOV). These probabilities are determined by 

assessing the probabilities of contributing failure events caused by the components that 

decompose a system and/or environmental factors such as Micrometeoroids & Orbital 

Debris (MMOD) or Galactic Cosmic Radiation (GCR).  



  Perez 10 

 The RID process aims to identify these risks early in the development cycle to 

make effective modifications to a system as it evolves into a deliverable product without 

blindly and unnecessarily applying risk reduction solutions (i.e. “make everything 

redundant and hope for the best”). However, the analysis tools, personnel and other 

resources required to apply RID are typically out of reach for system engineers during 

early development. In traditional projects, separate tools such as Relex, Windchill and 

SAPHIRE are used to perform risk assessments. The results of these analyses can 

sometimes have a dramatic impact on system design that may fail to effectively 

propagate to all affected components. MBSE CAD tools such as Innoslate can assist 

system engineers to expedite the RID process by integrating the failure analysis into the 

system architecture model, enabling early risk assessment and efficient tracking and 

updating of risks throughout the lifecycle.  

 Innoslate is a cloud-based MBSE CAD tool developed by Systems & Proposal 

Engineering Company (SPEC) Innovations led by Cynthia Mahugh-Dam and Dr. Steven 

Dam.10 Innoslate implements a Lifecycle Modeling Language (LML) that captures the 

technical and programmatic constructs of a system. LML combines the logical 

constructs of SysML with the ontology of DoDAF Metamodel 2.0 (DM2).11 The technical 

constructs can be broken up into model entities such as Actions, Assets, Artifacts, 

Characteristics and/or Statements. The programmatic constructs can also be broken 

down into entities such as Cost, Schedule, Risk and/or Time.  

 The fundamental power of this tool and most other MBSE tools, such as CORE 

or CRADLE, is the ability to create direct relationships within the entities of the model. 

This enables efficient tracking of system requirements and the automatic propagation of 
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changes made to the model. System engineers receive immediate feedback on 

changes implemented on the model.  

 Innoslate provides some unique capabilities when compared to other MBSE tools 

such as having an online data repository for artifacts, the ability to concurrently update 

the model and providing commentary feedback to specific entities in the model that can 

be viewed as a report. It is also platform independent, meaning that the tool can be 

used on a Mac or PC. Innoslate also offers readily available templates that can be 

imported into the model. These templates include DoDAF, CONOPS, WBS, JCIDS, 

MODAF and others. This research paper uses Innoslate as the primary tool to 

implement failure analysis on a basic system model with further extension to the Altair 

project.  
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MBSE RID PROCESS 

 

 

Figure 1. MBSE RID Process Flow Diagram 
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 This section describes the process of applying MBSE to RID methods. It uses a 

minimum functionality RID approach and applies it to a basic generic system model 

developed using Innoslate. Each step in the process is described with general notes, 

assumptions and diagrams to guide the reader. Figure 1 depicts the MBSE RID process 

step-by-step and it is discussed in detail in this section. 

 

MBSE RID Process: 

1) Develop Minimum Functionality System Architecture Model 

2) Develop Failure Event Architecture 

3) Establish Relationships Between Failure Event & System Architecture 

4) Assign Fixed Failure Probabilities to Components 

5) Perform Initial Analysis & Validate Results 

6) Apply Random Distribution Failure Probabilities 

7) Analyze 

8) Review 

9) Identify Enhancements for pLOC/pLOM/pLOV 

10) Update Architecture Model 

11) Repeat Steps 7 to 10 
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Develop Minimum Functionality System Architecture Model 

 The MBSE RID process starts with the development of a system architecture 

model that includes the physical and functional constructs of a minimally functional 

system. For this research paper, the functional constructs are omitted for simplicity. 

Figure 2 depicts the physical architecture built in Innoslate. The model is generic and 

uses simple designations that can be very helpful later as the model gets more complex. 

The designations do not follow any particular standard. Innoslate has a built-in capability 

that can conveniently search for the designations when building diagrams or 

establishing relationships. 

 

 

Figure 2. System f1 Hierarchy Chart 
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Develop Failure Event Architecture 

 After the system architecture model is built, the engineering team reviews the 

model to identify any potential failure events that the system may produce. For simplicity, 

the research paper identifies 1-for-1 failure events for each of the components and 

systems identified. For example, Component b1 performs a Failure Event of Component 

b1 and System f1 performs a Failure Event of System f1. Multiple failure events can be 

identified and captured by the model from a single component.  

 Once the failure events have been identified, it is then placed into the model as 

an independent architecture, which is essentially a fault tree diagram. While the physical 

architecture entities are “Assets”, functional and failure event architecture entities are 

“Actions”. At the bottom of any failure event architecture are the failures produced by 

the components that comprise the system. In general, the failure of any system is 

determined by the failure its components. There are environmental factors to consider 

as well, but this research paper does not account for those factors. A SimScript program, 

similar to JavaScript, embedded into each of the logic entities generates the 

probabilities. The user embeds the SimScript. Appendix I provides more information on 

the details of the SimScript. Figure 3 depicts a sample of the failure event model for 

System f1 that is broken down to the bottom level where the failure probabilities are 

generated.  

 The Hierarchy Diagram view of the failure event architecture provides a better 

perspective of the relationships between each of the events; however, the views are too 

large to view in this document. The physical hierarchy chart in Figure 2 provides a 
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similar view, but does not include the logic gates. Appendix I provides information on 

how to access to Innoslate model if there is independent interest to view the entire 

model. Although the logic entities in Figure 3 show an “OR” description, the SimScript 

may actually implement an AND logic function instead. It is recommended to add a brief 

descriptive note on each of the logic entities to make the distinction (i.e. FG.OR, 

FG.AND) as shown in Figure 3. 
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Figure 3. System f1 Failure Event Architecture Breakdown Action Diagram 
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Establish Relationships Between Failure Event & System Architecture 

 The failure event architecture was previously built separately from the physical 

model. Now relationships can be established between the two architectures by linking 

each component and system to its respective failure event. This is accomplished by 

going into each of the model assets and adding a link in the “performs Action” 

relationship. Figure 4 shows the “performs Action” entity location with a red arrow. This 

can be accomplished vice versa from the action entity, but the relationship is instead 

called “performed by”.   

 With relationships established, changes can be tracked and updated 

automatically without having to go into every affected entity in the model. An interesting 

view to use is the “spider diagram”. Figure 5 depicts the spider diagram for System f1 

and includes a color legend for easier tracking. This figure shows how the model 

elements are related and traced to each other. It is broken down to 3 levels, but can be 

broken down further up to 9 levels. For complex architectures, high levels may become 

difficult to interpret.  
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Figure 4. System f1 Asset Entity View 
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Figure 5. System f1 Traceability Spider Diagram 

Legend 
Blue = System 
Green = Subsystem 
Red = Component 
Orange = Failure Event 
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Assign Fixed Failure Probabilities to Components 

 To ensure that the model is built correctly, it is recommended to first assign fixed 

failure probabilities to each of the components before adding any kind of “noise”, or 

random distribution, to the values. The probability values assigned to the components in 

this research paper are generic and arbitrary. There are several resources that can be 

used to determine a probability value such as “Probabilistic Risk Assessment 

Procedures Guide for NASA Managers and Practitioners”, “NASA Risk-Informed 

Decision Making Handbook” or “Human Spaceflight: Mission Analysis And 

Design”.12,13,14 In general, for first-cut analysis, most failure probabilities are adopted 

from legacy or similar systems. Engineers also use reasonable judgment based on their 

personal experience. Determining failure probabilities is a process all in itself and it is 

not addressed in this research paper.  

 Figure 6 depicts the failure probability assignments for each of the components 

(Highlighted in Yellow) and the resulting system failure calculations performed in 

Microsoft Excel. Note that the numbers defined are actually probability of success 

values that are used to better compare results with the Innoslate analysis. To determine 

the actual failure probability, subtract the probability value from 1. For example, if 

pSuccess of f1 = 0.608 (Shown in Figure 6), then pFail of f1 = 1 – 0.608 = 0.392. 
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Figure 6. System f1 Failure Probability Assignment & Calculation 
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Perform Initial Analysis & Validate Results 

 The Excel calculation in Figure 6 should only be performed for simpler parts of 

the model to be able to validate the results from Innoslate. As the model becomes more 

complex and noise is introduced into the probabilities, it will be become a very laborious 

effort to work out the calculation. This paper continues to crunch this calculation for 

other parts of the process to show the reader that the manual calculation agrees with 

the Innoslate analysis.  

For OR logic functions, the following equation is applied: 

[ x1 * x2 * x3 … ] 

For AND logic functions, the following equation is applied: 

[ 1 – ( 1 – x1 ) * ( 1 – x2 ) * ( 1 – x3) … ] 

The SimScript uses the respective logic operators to implement the function: 

[ OR = || ] [ AND = && ] 

 

 The next task is to perform the failure analysis in Innoslate. Using the Action 

Diagram for the System f1 Failure Event, a Monte Carlo Simulation can be performed in 

order to quantitatively assess the failure probability of System f1. Run the simulation 

and view the graphical results. Note that the Monte Carlo simulation function is not part 

of the free package and requires a Professional subscription plan. The Monte Carlo 

simulation runs 100 iterations maximum of the failure events and it is performed using 

cloud-based computing. When evaluating the results, look at the percentage of 

simulations that passed and failed in the bar graph on the right. During each iteration 

count, passing events add time to the simulation through the use of the “No Failure” 

entities while failure events add no time through the use of the “Failure” entities. 
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Therefore, simulations that passed will accumulate in the bar with the longest time on 

the extreme right of the bar graph.  

 Any failure in the event chain over the 100 iterations will show a shorter time on 

the left of the graph, meaning if the user were to add up the bars on the left, it would 

add up to the failure probability, while the extreme bar on the right adds up the success 

probability. Appendix II provides more information on Innoslate’s Monte Carlo simulation 

and how it can be optimized to sum up the failure bars into a single bar. Figure 7 depicts 

Monte Carlo simulation graph generated by Innoslate. The graph on the left and the 

duration numbers on top can be ignored. The results of the Innoslate analysis show 

probability of success to be 0.60 (60%) while the results of the Excel spreadsheet in 

Figure 6 showed 0.608, an error of only 0.008. The number determined from the graph 

is “eyeballed” to the y-axis labels. Innoslate is working on an update to allow users to 

hover-over the bar to see an exact number as can be done with the graph on the left. 

Users will also notice that the analysis results will fluctuate up or down by a few percent. 

Unfortunately, there are not enough iteration counts to give an accurate result 

consistently. The simulation function is still experimental, but the Innoslate team is 

working on perfecting the simulation and providing more capability to the user 

community.  
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Figure 7. System f1 Innoslate Failure Analysis 
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Apply Random Distribution Failure Probabilities 

 Applying random distribution to failure probabilities is an advantageous capability 

offered by Innoslate through SimScripting. During system design, determining the exact 

failure probability of a component is often difficult to obtain and because of its statistical 

nature, can never be truly ascertained. There are space missions that have been short-

lived and ones that have far exceeded its predicted lifetime. Therefore, variations need 

to be implemented on each of the assigned failure probabilities to “shake-up” the 

analysis and determine if the design still meets criteria. ‘Math.random()’ is  a JavaScript 

function that returns a floating-point, pseudo-random, and non-uniform distribution 

number between the number 0 and 1 that is inclusive of the number 0, but exclusive of 

the number 1.15,16 With this function, variations can be applied to each of the failure 

probabilities defined for the components. Figure 8 depicts the SimScript function for 

Component a1 with a red arrow where the function is applied. Note that there is another 

‘math.random’ function in the script, but this is used to randomly decide if the 

component fails or passes while the ‘probOfSuccess’ (Red Arrow in Figure 8) sets the 

threshold. The component fails every time the random number is generated below 

‘probOfSuccess’, in this case 0.9. Appendix I provides more information on the 

SimScript. Adding a ‘math.random’ function to the ‘probOfSuccess’ variable will vary the 

failure threshold at every iteration count of the Monte Carlo simulation. The threshold 

essentially becomes a moving target. The following distribution equation is implemented 

to ‘probOfSuccess’ for Component a1: 

var probOfSuccess = Math.random()*(0.95-0.85)+0.85; 
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 The distribution equation above will vary ‘probOfSuccess’ from 0.85 to 0.95, or ± 

5% from 0.9. If ± 5% variation was implemented on all components of System f1 (i.e. 

Component a1, a2, b1, b2), the failure probability of System f1 should vary 

approximately ± 10%. This distribution is applied to the System f1 model in this research 

paper. Table 2 shows the results of 5 Monte Carlo simulation runs, which is equivalent 

to 500 iteration counts. It is interesting to note that although variation was shown in 

each run, over all the runs, the final average was approximately the fixed results from 

Figure 6 and 7. This is a contribution of the non-uniform distribution of the random 

function. Although the average eventually works itself out to the fixed value, the 

standard deviation becomes a valuable number to account for because it gives the user 

an indication of how much the failure probability varies from the mean.   

 



  Perez 28 

 

Figure 8. Component a1 Innoslate Failure Probability SimScript 

 

 

Table 2. System f1 Monte Carlo Runs With Distribution Applied 
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Analyze, Review, Identify Enhancements for pLOC/pLOM/pLOV & Update 
Architecture Model 

 The next step is an iterative cycle of analysis, review, identification and updates. 

The design team, subject matter experts and relevant stakeholders typically participate 

in this process.  This research paper does not detail this process, but the documents 

identified in the “Assign Fixed Failure Probabilities to Components” section provide 

more information.17,18 This research paper, however, continues the process by providing 

2 arbitrary updates to the model shown in Figure 2 that can be applied to pLOC, pLOM 

or pLOV analysis scenarios. For simplicity, random distribution is not used for the 

updates and the distribution values identified in the previous section have been reset to 

fixed values.  

 Figure 9 shows the summary of the first set of updates for System f0 with the 

addition of Subsystem c0. The Excel calculation resulted in a probability of success of 

0.731 (pFail = 0.269) while the Innoslate simulation resulted in 0.73 (pFail = 0.27). 

Figure 10 shows the summary of the second set of updates for System f0 with the 

addition of Subsystem d0. The Excel calculation resulted in a probability of success of 

0.925 (pFail = 0.075) while the Innoslate simulation resulted in 0.93 (pFail = 0.07). Table 

3 summarizes the Innoslate simulation results across the 3 phases shown in this section. 

 Figure 9 and 10 demonstrates that although the reliability of the system improved 

significantly (+0.33), it came at the sacrifice of additional complexity to the system that 

typically results higher in costs, longer schedules, higher mass, larger volume, more 

electrical power and/or extra resources. In the long run, a program saves money 

because this process is a conscious effort to add only the essential assets for a 
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successful mission, not a blind effort that adds complexity with insignificant impact to 

safety and reliability. The conscious effort also helps engineers identify and track the 

key drivers of system safety and reliability that can be addressed in a timely manner.  

 

 

 

 

 

Table 3. System f0 Innoslate Failure Analysis Summary 
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Figure 9. System f1 Update 1 
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Figure 10. System f1 Update 2 
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ALTAIR DESIGN REFERENCE EXAMPLE 

 The Altair lunar lander was comprised of four major components, which were an 

Ascent Module (AM), a Descent Module (DM), an Airlock and an Ares V Earth 

Departure Stage/Altair Adapter (EDSA).19 The Altair design implemented a RID process 

comprised of four phases called Lander Design Analysis Cycles (LDAC). LDAC-1, or 

the first phase, provided a “minimum functionality” baseline vehicle. This is a stripped 

down vehicle that performed only the very basic functions to accomplish the mission.20 It 

did not account for any safety or reliability requirements for the mission or crew.  

 In LDAC-2, engineers essentially “bought back” crew safety to enhance pLOC 

primarily at the cost of mass. Added capabilities to the vehicle to improve pLOC 

included abort functions, redundant O2 tanks, and an emergency communication 

system, among other capabilities.21,22 Engineers were careful to include only capabilities 

that were necessary to significantly improve pLOC. There is a common intuition within 

engineers that adding redundancy is always the most effective method of improving 

safety and reliability in a system. However, a critical lesson learned during that Altair 

analyses was that “full redundancy was usually the most massive and frequently not the 

most effective option for improving LOC.” 23 Because this is not always the case, it 

challenges engineers to come up with creative solutions that do not use redundancy. 

For example, an abort function is not a redundant item; however, it greatly enhances the 

safety of a system. Another example is adjusting the flight trajectory to one that is safer 

for humans, which is also a non-redundant item.   
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 In LDAC-3, engineers bought back mission reliability to enhance pLOM, also 

primarily at the cost of mass. Added capabilities to the vehicle to improve pLOC 

included manual circuit breakers for the power distribution unit, changing the DM and 

Airlock primary structures to composites, and adding another O2 tank, among other 

capabilities. 24  The design continued to LDAC-4 with very small increments of 

enhancements with natural design maturation, but nothing more was documented after 

LDAC-4 as program activity eventually halted due to the cancellation of Constellation.   

 As discussed earlier in the Develop Failure Event Architecture section, at the 

bottom of any failure event architecture are the failures produced by the components 

that comprise the system. The results of the failure analysis are only as good as the 

probabilities assigned to each of the components, whether it is a fixed value or a 

distribution, therefore, “garbage in equals garbage out”. Appendix IV provides an 

example of how probabilities were assigned to the components of the Altair lunar lander 

system, courtesy of Mr. Randolph Rust at NASA. Due to technical restrictions, the 

failure rates are generic and do not represent actual data, however, these numbers are 

representative of the probability numbers typically associated with space systems and 

their components.  

 The “minimum functional” design philosophy was new to large-scale NASA 

human spaceflight projects.25 Although incomplete, Altair provided very useful insight to 

crew vehicle design that can be applied to future human spaceflight projects. Appendix 

III depicts a summary of the Altair lunar lander design changes as it evolved through the 

analysis cycles taken from a design lessons paper developed by the Altair design team. 

In addition to the RID process, Altair also implemented MBSE to model the system and 
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its activities. According to Dr. John Connolly and Mr. Randolph Rust at NASA, the team 

used CRADLE as the system architecture-modeling tool; however, the failure analysis 

for pLOM was performed on a separate tool called SAPHIRE (Version 7-26), which is 

controlled by the Nuclear Regulatory Commission and Idaho National Laboratory, while 

the analysis for pLOC was performed using a Microsoft Excel document developed by 

Valador Corporation. Fault trees were created using common applications such as 

Microsoft Word and PowerPoint. This is a prime example of how this research paper 

can enhance RID with MBSE by consolidating the system modeling and failure analysis 

effort into a single tool.  

 Unfortunately, due to the complexity of the Altair project and the limited 

information and time available, this research paper could not develop a complete and 

accurate model of the Altair lunar lander using the MBSE method described in this 

research paper to replicate the failure probabilities shown in Appendix III and make an 

“apples-to-apples” comparison. Instead, this research paper shows a brief example of 

how failure events in the Altair Lunar Lander are modeled and simulated through the 3 

LDAC phases and how it contributes to pLOC and pLOM.  

 Figure 11 shows a sample physical architecture of the lunar lander that starts 

from the 4 major, top-level systems down to the O2 tanks of the ECLSS System in the 

Ascent Module. O2 Tank 1 is a minimum functionality item needed to keep the crew 

alive and accomplish the mission; therefore, it is included in the LDAC-1 analysis and 

folds into the pLOC and pLOM failure analysis. The O2 Tanks 2 and 3 are added 

successively at each phase of the design cycle as long as the design team deems it 
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necessary through peer reviews. In this case, the design team deemed the additional 

O2 tanks necessary according to the LDAC assumptions shown in Appendix III.  

 For simplicity, the success probability for each of the O2 tanks is arbitrarily set to 

0.6 (pFail = 0.4). Since it takes all 3 tanks to fail in order for the ECLSS System to fail, 

an AND logic is implemented. Figure 12 summarizes the Innoslate failure analysis 

implemented across the 3 design phases. Note the failure rate improvement as it 

progresses through the phases, but at the cost of adding new elements to the 

architecture resulting in higher in costs, higher mass and larger volume to say the least. 

Since there are numerous failure events required to determine pLOC and pLOM, it is 

not addressed in this research paper.  

 The failure of the O2 tanks in this scenario contributes to both pLOC and pLOM 

because not only would the crew not have breathable air that would suffocate them 

(pLOC), the lunar lander system would not have the required human inputs to complete 

the mission (pLOM). Determining pLOC and pLOM typically requires 2 separate failure 

event architectures, or fault trees; however, many of the failure events overlap such as 

in the case of the O2 tanks. Innoslate has no issue reusing failure event entities for 

multiple architectures, therefore saving engineering design time. However, failure 

events within a single architecture must be unique because of the unique variables set 

within the SimScripts (i.e. a0Fail, b0Fail, f2Fail, etc.). This section demonstrated how 

the MBSE RID process described in this paper is applied to a specific human 

spaceflight project. 
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Figure 11. Altair Lunar Lander Sample Physical Architecture 
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Figure 11. Altair Lunar Lander O2 Tank Failure Events 
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LESSONS-LEARNED 

 This section highlights some of the lessons-learned in conducting this research 

and offers suggestions. In general, many of the lessons-learned were documented in 

the MBSE RID Process section. There were many unknowns at the beginning of the 

research that were underestimated and that needed to be investigated and worked out. 

The list below is not an exhaustive list of lessons-learned, but focuses on the important 

ones.   

 

1. As the system and failure event architecture were being developed, reference 

designations were being assigned for each of the entities in the “number” field. It 

was straightforward at first to just assign designations in some kind of logical 

order (i.e. ‘a.0’, ‘a.1’, ‘a.2’), but when changes needed to be made, it was a 

difficult task to make changes without ruining the logical order set, especially 

when it’s somewhere in the middle of the order. Establish a reference 

designation strategy prior to model development. The strategy should be logical 

and flexible to allow for changes throughout the process. This can be 

implemented for any category of entities (i.e. failure events – FE.0, failure 

probability generators – FP.0, failure gates – FG.0, components – C.0, etc.). 
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2. In the sea of entities that can be created in the MBSE CAD tool, it became 

burdensome to sort the entities of interest for a particular modeling task and keep 

track of it. Establish a labeling strategy prior to model development. For small-

scale models, using labels may not provide significant value, but for mid- to 

large-scale models, it becomes very useful, almost necessary, to efficiently 

manage the model. Innoslate offers a labeling feature that filter entities of a 

specific group determined by the user. This feature may not be offered in all 

MBSE CAD tools, but it is one to look for and use to improve the model 

development experience. 

 

3. It was sometimes taken for granted that the failure event pieces in the model 

were setup with the correct configuration, connections and SimScripts. Results 

were therefore shown with error. Perform manual calculations of small parts of 

the failure event architecture to validate correct operation. This is a sanity check 

to ensure that the SimScripts and connections are working properly. Calculations 

can be performed with a portable calculator, but it is recommended to use 

Microsoft Excel, or any spreadsheet application, to perform the calculations.  

 

 

 

 



  Perez 41 

 
 

4. One of the main items investigated in this research was the use of the MBSE 

CAD tool, Innoslate. The tool provided many great features as mentioned in the 

Background Review section. However, Innoslate still has room for improvement. 

It is a relatively new program that released its second version over the Summer 

2013. The Monte Carlo simulation was considered experimental at the time of 

this research. Appendix I provides more details on the use of Innoslate and notes 

some of the minor issues experienced. As with any tool, there is a learning curve 

to account for, therefore, plan accordingly for some training time. However, 

engineers that are savvy with CORE or CRADLE will likely have a much smaller 

learning curve since much of the modeling concept and language are very similar. 

The SPEC Innovation technical team provides great support in answering 

questions, addressing issues and providing training opportunities (i.e. lunch & 

learn).  

 

 
5. A critical lesson-learned taken from the Altair project was that full redundancy is 

often not the most effective option for improving failure probabilities. It is quite 

instinctive for engineers to simply add redundancy to improve safety and 

reliability. No direct examples were shown in this research paper, but this is a 

valuable note for engineers to take away and consider for future projects.  
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RECOMMENDATIONS 

The following are recommendations for potential future research topics that can be 

taken up academically or professionally. The specific focus and limited timeline of this 

research paper prevented further investigation of these topics. 

 

1. Non-Redundant Methods of Improving Safety & Reliability for Space Systems 

a. The Altair project has shown that full redundancy is not always the answer 

for enhancing safety and reliability within a system. Some non-redundancy 

options were noted such as abort capabilities and flight trajectory 

alternatives. Implementing non-redundancy sometimes requires creativity 

and ingenuity. The focus of this investigation could be on developing non-

redundant options for space systems by collecting data from legacy and 

current systems, identifying common issues and solutions, identifying rare 

cases and creating novel approaches. Engineers can benefit by using the 

research as a reference guide that can be directly applied to a problem or 

as an idea kickstarter. This investigation seeks to answer a fundamental 

question, “What non-redundant alternatives for space systems can 

engineers implement to improve safety and reliability?” 
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2. Application of Dynamic Logic To System Architecture Modeling 

a. This research paper only covered static logic (i.e. AND, OR), which can 

execute series and parallel configurations in a system. There are other 

configurations such as Standby, Cross-linked, On-Demand and more 

exotic configurations that cannot be implemented using static logic, but 

rather using dynamic logic, which can account for temporal aspects of 

failure events. One example of dynamic logic is the use of Priority AND 

(PAND) gates, where the order in which the inputs occur matter. This 

research paper provides a couple of references on dynamic logic.26,27 The 

focus of this investigation could be on developing SimScript or JavaScript 

algorithms that can implement dynamic logic and then integrate it into an 

MBSE CAD tool to execute time-based failure events such as Standby or 

Cross-linked. This can enhance the MBSE RID process by having the 

ability to simulate other types of failure events.  
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3. MBSE RID Process Failure Probability Analysis Extension Into MTBF Analysis 

a. This research paper focused on the quantitative analysis of failure events 

based on the failure rates of system components, but it does not translate 

any of the analysis for use in MTBF analysis. MTBF is simply a reciprocal 

of failure rate and it represents a ratio of total operating time to total 

number of failures within that time.28 It is very often used in industry 

alongside failure rates. Modern MBSE CAD tools have been slowly 

incorporating Reliability, Availability and Maintainability (RAM) capabilities 

that can perform this analysis and perhaps bridge this gap. The focus of 

this investigation could be on developing algorithms or leveraging MBSE 

CAD features to translate failure rates found in this research paper into 

MTBF values for use as an alternative method to failure analysis.  

 

4. Application of Alternative Random Distribution Types 

a. As discussed earlier, the ‘math.random()’ JavaScript function implements 

a pseudo-random and non-uniform distribution. It was difficult to track 

down references on the exact nature of the ‘math.random()’ function, but it 

would seem to implement a flat (i.e. even, 50/50) distribution, or at least 

very close to it, based on the results found in this paper. It would likely be 

of great interest to engineers to be able to implement different types of 

distribution such as Gaussian, Uniform or Logarithmic. The focus of this 

investigation could be on developing algorithms to implement several 

types of random distribution to failure rates in MBSE CAD tools.  
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CONCLUSION 

 The research demonstrated an end-to-end MBSE RID process that was applied 

to a basic system model and a sample of the Altair lunar lander system. The process 

streamlines the effort of system architecture modeling and failure analysis that offer 

system engineers a cost-effective advantage of conducting RID early in the design cycle. 

Once the model is developed during the design phase, it becomes an iterative process 

of review and updates that extends throughout the entire lifecycle of a system. MBSE 

CAD tools enhance the experience of executing the process.  

 The research also demonstrated that MBSE in general, and Innoslate specifically, 

is capable of providing an integrated, effective and quantitative means of developing a 

risk-informed system design using a minimum functionality baseline process. This can 

be applied to human and robotic spaceflight systems and other systems with similar 

complexity. As with any engineering analysis tool, engineers should never use the 

results of an analysis as the sole justification to make a decision, however, the results 

can be used as a focal point in technical discussions. The Altair RID process also 

exercised this philosophy. Although Innoslate was the prime MBSE tool used, there are 

other tools that may provide similar functionality. 

 Furthermore, the research demonstrated that random distributions could be 

added to failure probabilities in order to add “noise” to the results, a task that can be 

laborious, if not impossible, if performed using a portable calculator or spreadsheet. 

Because of the statistical nature of failure events, adding distributions to component 

failure rates help ensure that systems still meet criteria over a determined variation. 
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Prior to adding distributions, the model should be validated first by using fixed values to 

ensure that the model is setup correctly.  

 With space systems continuously evolving and becoming more complex every 

day, engineers are struck with the need to continuously develop tools to address the 

challenging environment and provide effective solutions to mitigate technical and 

programmatic risks. Tools and processes are only as effective as the people who use it; 

therefore, engineers must continuously seek professional development not only for 

personal growth, but also for the growth of the state-of-the-industry. In a climate of 

shrinking budgets and increasing technical demands, the MBSE RID Process described 

in this research proposes a feasible alternative to risk management during system 

design, development and deployment. 
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APPENDIX I: INNOSLATE MODELING 

 Figure 12 depicts a graphic overview of how to develop a physical architecture 

using “Assets” in Innoslate. In the same manner, a functional architecture can be 

developed, however, “Action” entities are used instead of “Assets”.  

 Figure 13 & 14 show a “Database” view of all the generic failure event entities 

developed in this research paper, which comprises the entire failure event 

architecture. 

 Figure 15 depicts a breakdown structure of the System f0 failure architecture 

down to Component a1 in an “Action Diagram” view (Similar to Figure 3). When 

creating the ‘OR’ action entities that implement SimScript routines, it is best to 

create it in the “Action Diagram” view (See graphic below).  

 

 Figure 16 represent “Failure” and “No Failure” time path entities. These are 

important to include in every failure architecture model where a logic gate exists. 

While a failure adds no time to the simulation, a no-failure adds time (1 hour). 

Simulation iterations that fully pass will accumulate as the longest time in the 

Monte Carlo bar graph.  
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APPENDIX I: INNOSLATE MODELING 

Innoslate Modeling Figure Notes 

 Figure 17 depicts the Failure Event Architecture Hierarchy View for System f0. 

Although difficult to view in this document, it can provide a general sense of the 

structure.  

 Table 4 & 5 show all the SimScript details for the failure gate and probability 

entities that require it. 

 

o User-Defined Variables (In Green):  

 var probOfSuccess = #.#; --- Set Success Rate 

 globals.put(“refdesFail”, “true”); --- Set Reference Designation 

Variable 

 globals.get(“refdesFail”) --- Retrieves Variable Set 

 var probOfSuccess = Math.random()*(max-min)+min; --- Set 

Random Distribution with Minimum and Maximum Range Values 

 Warning! Unless the user is savvy with JavaScript, it 
is recommended to leave all other lines as-is unless 
adding more global variables or updating the logic 
operators 

o AND Logic Operator = && 

o OR Logic Operator = || 

o AND & OR logic operators can be combined within a single script, but may 

be difficult to track externally within the model since scripts are buried 

within the entities 

 



 Perez 54 

APPENDIX I: INNOSLATE MODELING 

 

Figure 12. Developing Assets Using Innoslate 
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APPENDIX I: INNOSLATE MODELING 

 

 

 

 

Figure 13. Innoslate Failure Event & Gate Entities 
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APPENDIX I: INNOSLATE MODELING 

 

 

 

 

 

 

 

Figure 14. Innoslate Failure Probability Entities 
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APPENDIX I: INNOSLATE MODELING 

 

Figure 15. Developing Failure Architecture Using Innoslate 
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APPENDIX I: INNOSLATE MODELING 

 

 

 

 

 

 

Figure 16. Failure/No-Failure Time Path Entities  
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APPENDIX I: INNOSLATE MODELING 

 

 

Figure 17. System f0 Failure Event Architecture Hierarchy View  
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APPENDIX I: INNOSLATE MODELING 

 

FG.OR - Subsystem Gate (a0) FG.AND - Subsystem Gate (b0) 

function onEnd()  
{ 
   
 if(globals.get("a1Fail") ||  
    globals.get("a2Fail"))  
     
 { 
 globals.put("a0Fail", "true");   
 return "Yes";                             
 } 
  
 else  
 { 
 return "No"; 
 } 
 
} 

function onEnd()  
{ 
   
 if(globals.get("b1Fail") &&  
    globals.get("b2Fail"))  
     
 { 
 globals.put("b0Fail", "true"); 
 return "Yes";                             
 } 
  
 else  
 { 
 return "No"; 
 } 
 
} 

    

FG.OR - Subsystem Gate (c0) FG.AND - Subsystem Gate (d0) 

function onEnd()  
{ 
   
 if( globals.get("c1Fail") || 
  globals.get("c2Fail") || 
  globals.get("c3Fail"))  
     
 { 
 globals.put("c0Fail", "true");   
 return "Yes";                             
 } 
  
 else  
 { 
 return "No"; 
 } 
 
} 

function onEnd()  
{ 
   
 if( globals.get("d1Fail") && 
  globals.get("d2Fail") && 
  globals.get("d3Fail"))  
     
 { 
 globals.put("d0Fail", "true");   
 return "Yes";                             
 } 
  
 else  
 { 
 return "No"; 
 } 
 
} 

 

Table 4A. Failure Gate Entity SimScript Summary A 
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APPENDIX I: INNOSLATE MODELING 

 

 

 

 

 

 

FG.OR - Subsystem Gate (f1) FG.AND - Subsystem Gate (f2) FG.AND - Subsystem Gate (f0) 

function onEnd()  
{ 
   
 if(globals.get("a0Fail") ||  
    globals.get("b0Fail"))  
     
 { 
 globals.put("f1Fail", "true");   
 return "Yes";                             
 } 
  
 else  
 { 
 return "No"; 
 } 
 
} 

function onEnd()  
{ 
   
 if(globals.get("c0Fail") &&  
    globals.get("d0Fail"))  
     
 { 
 globals.put("f2Fail", "true");   
 return "Yes";                             
 } 
  
 else  
 { 
 return "No"; 
 } 
 
} 

function onEnd()  
{ 
   
 if(globals.get("f1Fail") &&  
    globals.get("f2Fail"))  
     
 { 
 globals.put("f0Fail", "true");   
 return "Yes";                             
 } 
  
 else  
 { 
 return "No"; 
 } 
 
} 

 

Table 4B. Failure Gate Entity SimScript Summary B 
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APPENDIX I: INNOSLATE MODELING 

 

FP - Component (a1) FP - Component (a2) 

function onEnd()  
{ 
  
 var probOfSuccess = 0.9; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("a1Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

function onEnd()  
{ 
  
 var probOfSuccess = 0.9; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("a2Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

    

FP - Component (b1) FP - Component (b2) 

function onEnd()  
{ 
  
 var probOfSuccess = 0.5; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("b1Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

function onEnd()  
{ 
  
 var probOfSuccess = 0.5; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("b2Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

 

Table 5A. Component Failure Probability Entity SimScript Summary A 



 Perez 63 

APPENDIX I: INNOSLATE MODELING 

 

FP - Component (c1) FP - Component (c2) FP - Component (c3) 

function onEnd()  
{ 
  
 var probOfSuccess = 0.9; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("c1Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

function onEnd()  
{ 
  
 var probOfSuccess = 0.7; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("c2Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

function onEnd()  
{ 
  
 var probOfSuccess = 0.5; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("c3Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

      

FP - Component (d1) FP - Component (d2) FP - Component (d3) 

function onEnd()  
{ 
  
 var probOfSuccess = 0.5; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("d1Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

function onEnd()  
{ 
  
 var probOfSuccess = 0.3; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("d2Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

function onEnd()  
{ 
  
 var probOfSuccess = 0.2; 
 var probOfFailure = 1 - probOfSuccess;  
 var randomNumber = Math.random(); 
    
   if(randomNumber < probOfFailure)  
 { 
 globals.put("d3Fail", "true"); 
 return "Yes"; 
   } 
   
   else  
   { 
 return "No"; 
   } 
   
} 

 

Table 5B. Component Failure Probability Entity SimScript Summary B 
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APPENDIX I: INNOSLATE MODELING 

 

Innoslate Modeling General Notes 

1. Unable to duplicate an action entity within the same class (i.e. duplicating an OR 

action entity does not duplicate to an OR entity, but rather a basic action entity) 

or to change the action entity type  

2. For security reasons, Innoslate denies read and write access to its program 

scripts. Users only have access to global variable sets. There are no limits to 

how many variables can be set and are reset after every simulation. 

3. Innoslate limits to 200 entities in a model. Be sure to clear out un-needed 

simulation runs to keep the model clean and free. 

4. Avoid using the same failure entity twice in the same architecture chain. An 

anomaly was observed when a Monte Carlo simulation was performed and an 

infinite loop was detected. This will force the user to eventually delete and 

recreate the entity, but not for its related entities. The loop did not happen for 

every case. 

5. Minor issues have been observed with the type of browser used, but this is 

typically resolved either with an update to the browser by the user or the 

Innoslate software by the SPEC team 

6. Although Innoslate uses cloud-computing, slower performance was noticed after 

running many Monte Carlo simulations from the personal computer processor 

and hard drive storage also gets eaten away 
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APPENDIX I: INNOSLATE MODELING 

 

Innoslate Links 

 https://innoslate.com/ 

 https://innoslate.com/features/tour/overview/ 

 https://innoslate.com/help/ 

 https://innoslate.com/wp-content/uploads/2012/08/Using-Innoslate-for-

Operations-and-Support-OS.pdf 

 

JavaScript Links 

 http://www.w3schools.com/js/ 

 

For Read-Only access to the system architecture model described in this 

paper, please sign-up for an Innoslate account at https://innoslate.com/ and 

send an e-mail to the author at rmperez88@gmail.com. Be sure to include 

the e-mail used in the Innoslate account. 
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APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 

 

Innoslate Monte Carlo Simulation Figure Notes 

 

 Figure 18 depicts a graphic overview of how to run Monte Carlo simulations in 

Innoslate. The computation time varies depending on the complexity of the model 

and it is performed in the Cloud. The bar graph at the end summarizes the 

iterations that failed or succeeded over 100 counts. Each success iteration 

accumulates in the single, extreme right bar, while each failure iteration 

accumulates on any of the bars on the left. Remember that the “Failure” entities 

add no time to the simulation while the “No Failure” entities add time (In this 

model, +1 Hour). The results in Figure 18 shows that there were 92% (0.92) 

success iterations over 100 passes, while there were 8% (0.08) failure iterations 

over 100 passes. These values represent the failure rate of that particular system. 

 

 Figure 19 shows how to retrieve Monte Carlo simulation artifacts from the model 

after the simulation has been closed out. Every simulation performed in Innoslate 

automatically creates an artifact in the model. By default, artifacts automatically 

get assigned a name with a time stamp (i.e. “Monte Carlo 2013-12-06 05:12:15 

AM”). It is recommended to rename the artifact to something more logical and 

flexible to allow for easier tracking and updating as the model grows.  
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APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 

 

 Figure 20 shows an optional way of consolidating the failure bars of the Monte 

Carlo simulations. For the generic model in this research paper, not many 

additional failure bars were generated, however, as the model grows, much more 

failure bars are likely to show up. Each failure bar represents a different time in 

the sequence of failure events when the system failed, therefore, longer failure 

event chains will show more failure bars and the graph may become difficult to 

read. Adding a time spacer element with a long duration to only the last “No 

Failure” entity in the failure event sequence will push the success bar to a more 

extreme time category. This results in the consolidation of the smaller failure time 

categories to the left because the graph will not support very large increments.  
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APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 

 

Figure 18. Running Monte Carlo Simulations Using Innoslate 
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APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 

 

Figure 19. Retrieving Monte Carlo Simulation Artifacts 
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APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 

 

Figure 20. System f0 Spacer Time Element Comparison 
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APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 

 

Innoslate Monte Carlo Simulation General Notes 

 Innoslate limits the iteration count to 100 maximum. They are looking to provide 

more flexible iteration options for Monte Carlo simulations. For now, it’s 

experimental. 

 Innoslate Monte Carlo bar graphs that do not provide exact accumulation 

numbers requiring the user to follow the top edge of the bar to the axis. They are 

looking to provide a hover-over feature to allow users to view the exact numbers 

in the next version. 

 When viewing the bar graph for the Monte Carlo analysis, the chat box icon 

sometimes blocks the x-axis marking depending on the size and resolution of the 

computer display. Smaller displays will tend to block the axis. Users can zoom 

out using the browser function to clear it away. 

 Users can upload any type of electronic file into “Artifacts”. Innoslate will hold it 

as data repository item. Artifacts are treated as any other entity in the model, but 

with the additional upload feature, therefore, users can create artifacts just like 

other entities and also create relationships to artifacts, a key benefit. Back-up 

project files for Innoslate can also be held in artifacts, which comes as a ‘.xml’ file.  
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APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 

 

 When running Monte Carlo simulations, the simulation may sometimes seem to 

hang-up in the process. If the user waited for several minutes after the simulation 

was declared “Success!” with no response and the simulation icon below is still 

active, then there may be a chance that the simulation already completed and 

generated an artifact. Figure 19 shows how to retrieve artifacts. Keep in mind 

that complex models will require more time to simulate. If the user decides to 

look for the artifact during a simulation, then the simulation will stop and if not 

completed, it will not generate an artifact. The user will be forced to run the 

simulation again.  
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APPENDIX III: ALTAIR LUNAR LANDER DESIGN CHANGES THROUGH THE 
ANALYSIS CYCLES 

 

 

Notes:  

 Taken from the following source: 

John Connolly, Robert L. Bayt, and James H. McMichael, Human Planetary 
Spacecraft Design Lessons, NASA, International Astronautical Congress, 2010: 
2. 

 

 

 

 

 

♦ Minimally 
functional vehicle

♦ Improve LOC risk postureTheme:

Major 
Upgrades, 
Additions, 
Findings:

Expected 
Vehicle 
Mass:

LOC:

DAC-1 DAC-2 DAC-3 RAC-1&2
♦ Improve LOM risk 

posture
♦ Mature 

requirements and 
assess gaps in 
Lander  design

♦ Third flight computer

♦ Third IMU, docking 
camera backup to star 
tracker, and IMU-less 
(manual) mode

♦ Manual circuit breakers 
in PDUs

♦ Added 3rd life support 
O2 tank

♦ Valving, plumbing, 
wiring upgrades to all 
sub-systems

♦ Changed DM and AL 
primary structures to 
composites

♦ Changed to autogenous
pressurization on DM

♦ Reviewed and 
matured the Altair-
allocated CARD 
requirements, C3I 
requirements, and 
HSIR requirements

♦ Improved fidelity 
and expanded the 
T/O list

♦ Matured 6 major 
variants of the DM 
structure and tank 
configurations

♦ Added abort capabilities

♦ Updated  descent 
trajectory / delta v

♦ Redundant  suit loop 
compressor, O2 sensors, 
and O2 tanks

♦ Selected redundancy 
within fuel cell stack, 
battery, and PDU

♦ Emergency 
communications system

♦ Second IMU, star tracker, 
and b/u radar electronics

♦ Valving, plumbing, wiring 
upgrades to all sub-
systems

♦ N/A

45,524 kg
(no T/O assessments)

(p0905-A)

45,720 kg Base 
7,558 kg Threats

(p0905-C)

1 in 196 1 in 256 1 in 277

LOM: Not assessed

DAC-4
♦ Requirement 

incorporation 
and maturation

♦ Re-close vehicle 
design based 
upon RAC1&2 
requirement 
acceptances

♦ Distributed 
avionics 
replacing 
centralized 
avionics

♦ Landing loads 
assessment and 
resizing

1 in 4 1 in 22 1 in 22

In work

44, 900 kg Base 
4,400 kg Threats

(p1006-D)

In work

1 in 6

45,000 kg
(no T/O assessments)

45,002 kg
(no T/O assessments)

(p0804-D)
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APPENDIX IV: ALTAIR LUNAR LANDER GENERIC FAILURE RATES  

 

Notes:  

 Rate values are arbitrary and unitless 
 Table provided courtesy of Mr. Randolph Rust at NASA 
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ACRONYMS 

 

AM  Ascent Module 
CAD  Computer-Aided Design 
CONOPS Concept of Operations  
DAC Design Analysis Cycle 
DM Descent Module 
DM2 DoDAF Metamodel 2.0 
DoDAF Department of Defense Architecture Framework 
DTIC Defense Technical Information Center 
EDSA Earth Departure Stage/Altair Adapter 
ECLSS Environmental Control and Life Support System 
FMECA  Failure Modes and Effects Criticality Analyses 
FE Failure Event 
FG Failure Gate 
FM  Failure Mode 
FP Failure Probability 
GCR Galactic Cosmic Radiation 
IAC International Astronautical Congress 
INCOSE International Council on Systems Engineering 
JCIDS Joint Capabilities Integration and Development System 
LDAC Lander Design Analysis Cycle 
LL Lunar Lander 
LML Lifecycle Modeling Language 
MBSE  Model-Based Systems Engineering 
MMOD Micrometeoroids & Orbital Debris (MMOD) 
MODAF Ministry of Defence Architecture Framework 
NASA  National Aeronautics and Space Administration 
NEC Nippon Electric Company 
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pLOC Probability of Loss of Crew 
pLOM Probability of Loss of Mission 
pLOV Probability of Loss of Vehicle 
pLOS Probability of Loss of System 
PRA Probabilistic Risk Assessment 
RAC Requirements Analysis Cycles 
RAM  Reliability, Availability & Maintainability 
RID  Risk-Informed Design 
RIDM Risk-Informed Decision Making 
RM Risk Management 

SAPHIRE Systems Analysis Programs for  
Hands-on Integrated Reliability Evaluations 

SPEC  Systems and Proposal Engineering Company 
SysML System Modeling Language 
WBS Work Breakdown Structure 

 


