

Application of MBSE to Risk-Informed Design Methods

for Space Mission Applications

Rafael M. Perez

Master’s Project

SYS 800: Special Problems in System Engineering

Fall 2013

Advisor: Dr. Jerry Jon Sellers

 Perez 2

DEDICATION

I dedicate this research to God and my lovely wife, Yenie, for their unconditional love

and support in my life and throughout my study.

 Perez 3

ACKNOWLEDGEMENTS

 I wish to express my deep gratitude to Dr. Jerry Jon Sellers, my research advisor,

for his patient guidance, constant encouragement, and constructive critiques during the

planning and conduct of this research. I wish to thank various people for their

contribution to this project; Dr. Steven Dam, Mr. Robert Sperlazza and Mr. Chris Ritter,

staff of SPEC Innovations, for their valuable technical support and recommendations in

developing the Innoslate model; Dr. John Connolly, Dr. Robert Bayt, and Mr. Lee

Graham, staff of NASA, for providing reference material on RID and the Altair Project;

Mr. Randolph Rust, staff of NASA, for his valuable assistance in providing data from the

Altair Project. I wish to offer special thanks to Mr. Scott Fisher, staff of Exelis Inc. and

my department manager, for his support throughout my study. I would like to extend my

thanks to Dr. Peter McQuade, Program Director, for supporting the Space Systems

Engineering program at Stevens Institute of Technology and the approval of Dr. Sellers

as my advisor. I would also like to extend my thanks to Mr. Vincent Lauria and Ms.

Marian Plummer, staff of Exelis Inc., for their encouragement and recommendation to

attend the program. Finally, I wish to thank my lovely wife, Yenie, for her incredible

support and encouragement throughout my study.

 Perez 4

ABSTRACT

 This paper describes research into the application of Model-Based Systems
Engineering (MBSE) tools and processes to Risk-Informed Design (RID). RID enables
system risk analyses early in the lifecycle of spaceflight projects allowing designers to
use risk as a design commodity and part of the overall trade space. RID uses a
“minimum functionality” approach, whereby a minimal, single-string system design is
first envisioned that only meets basic performance requirements without any regard to
overall reliability or safety. Risk analyses are then used to apply informed design
enhancements based on their contribution to risk reduction. A recent application of RID
was the Altair Lunar Lander Project that was intended for human lunar exploration
under NASA’s Constellation Program. The Altair project’s approach and results are
reviewed and analyzed in this paper as a specific application of RID. In traditional
projects, several tools such as Relex, Windchill or SAPHIRE, are used in parallel to
apply risk informed design techniques. These analyses also traditionally occur later in
the design cycle when changes are more difficult to implement. Safety and reliability
analyses typically have no direct connection with the system architecture model, which
accurately depicts the physical and functional constructs of a system, including the
“ilities”. The model is directly impacted by the results of the analyses. This creates a
time-consuming iterative process of analyses and modification because of the need to
integrate several tools and teams. To improve this process, the research described here
investigated the use of a single, cloud-based MBSE CAD tool called Innoslate that
integrates failure analysis into the system architecture model. The specific focus of the
research was on the analysis of system failure events through the use of a system
architecture-modeling tool and the establishment of an MBSE process that enables
system engineers to make risk-informed system modifications during development. The
conclusion of the research was that MBSE in general, and Innoslate specifically, is
capable of providing an integrated, effective and quantitative means of developing a
risk-informed system design using a minimum functionality baseline process. This can
be applied to human and robotic spaceflight systems and other systems with similar
complexity. The research demonstrated that random distributions could be added to
failure probabilities in order to add “noise” to the results, a task that can be laborious, if
not impossible, if performed using a calculator or spreadsheet. The research also
demonstrated an end-to-end MBSE process that was applied to a basic system model
and the Altair Project. Recommendations for future work conclude the paper.

 Perez 5

TABLE OF CONTENTS

INTRODUCTION ... 6

BACKGROUND REVIEW ... 8

MBSE RID PROCESS .. 12

ALTAIR DESIGN REFERENCE EXAMPLE ... 33

LESSONS-LEARNED ... 39

RECOMMENDATIONS ... 42

CONCLUSION .. 45

ENDNOTES .. 47

LIST OF REFERENCES ... 50

APPENDIX I: INNOSLATE MODELING ... 52

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION 66

APPENDIX III: ALTAIR LUNAR LANDER DESIGN CHANGES 73

APPENDIX IV: ALTAIR LUNAR LANDER GENERIC FAILURE RATES 74

ACRONYMS .. 75

 Perez 6

Application of MBSE to Risk-Informed Design Methods
for Space Mission Applications

“Science is a way to teach how something gets to be known. In as much as anything
can be known, because nothing is known absolutely. It’s how to handle doubt and
uncertainty. Science teaches us what the rules of evidence are. We mess with that at
our peril." – Richard P. Feynman1

INTRODUCTION

 Legacy and modern systems for human and robotic space missions are often

comprised of many intricate parts that must work harmoniously to accomplish a mission.

Standing at 184 feet and weighing over 4.5 million pounds at launch, NASA’s Space

Shuttle was composed of over 2.5 million parts, including the Orbiter, External Tank and

Twin Solid Rocket Boosters.2 Despite the arduous effort to avoid the loss of a mission or

crewmember, 2 of the 5 operational orbiters were lost along with their fearless crew.

 Engineers today are shouldered with the challenge and responsibility of

preventing these accidents from occurring through robust and evolving engineering

practices. Risk Management (RM) is an important function to perform throughout the

lifecycle of any mission that has “repeatedly proven capable of uncovering design and

operational weaknesses that had escaped even some of the best deterministic safety

and engineering experts.”3 However, system engineers often lack the necessary tools to

perform quantitative risk assessments early in a mission life cycle when the design is

very flexible and adept to changes. The growing practice of Model-Based Systems

Engineering (MBSE), an object-oriented method of system modeling, offers an

opportunity for system engineers to implement risk assessments without the need of a

 Perez 7

large design team or very advanced reliability software. This paper describes research

into the application of MBSE tools and processes to Risk-Informed Design (RID).

 RID enables system risk analyses early in the lifecycle of spaceflight projects

allowing designers to use risk as a design commodity and part of the overall trade

space. RID uses a “minimum functionality” approach, whereby a minimal, single-string

system design is first envisioned that only meets basic performance requirements

without any regard to overall reliability or safety. Risk analyses are then used to apply

informed design enhancements based on their contribution to risk reduction. A recent

application of RID was the Altair Lunar Lander Project that was intended for human

lunar exploration under NASA’s Constellation Program. The Altair project’s approach

and results are reviewed and analyzed in this paper as a specific application of RID.

 Unfortunately, these analyses traditionally occur later in the design cycle when

changes are more difficult to implement. Safety and reliability analyses typically have no

direct connection with the system architecture model, which accurately depicts the

physical and functional constructs of a system, including the “ilities”. The model is

directly impacted by the results of the analyses. This creates a time-consuming iterative

process of analyses and modification because of the need to integrate several tools and

teams. To improve this process, this paper investigated the use of a single, cloud-based

MBSE CAD tool called Innoslate that integrates failure analysis capabilities into the

system architecture model. The specific focus of the research is on the analysis of

system failure events through the use of a system architecture-modeling tool and the

establishment of an MBSE process that enables system engineers to make risk-

informed system modifications during design and development.

 Perez 8

BACKGROUND REVIEW

 This research paper is first and foremost about the leveraging of Model-Based

System Engineering (MBSE) methods to enhance Risk-Informed Design (RID) methods.

According to the International Council On Systems Engineering (INCOSE), MBSE is the

“formalized application of modeling to support system requirements, design, analysis,

verification and validation activities beginning in the conceptual design phase and

continuing throughout development and later life cycle phases.”4 It is an integrated,

object-oriented and model-centric approach that enhances the system engineering

experience to efficiently manage moderate to complex systems that is particularly useful

for spaceflight programs. Traditional engineering methods use a document-centric

approach in which the constructs of a system are defined by physical and/or electronic

documentation. Many of these documents are products of a large variety of engineering

CAD tools. Table 1 highlights some of the major differences between a document-

centric and a model-centric approach adopted from a Vitech Corporation seminar on

MBSE.5

 MBSE tools can capture a wide range of system artifacts from system

requirements and CONOPS to test plans and mission scenarios, including timelines.

Engineers across multiple disciplines can use a single tool to track the development of a

system. As long as the same system-modeling tool is used, engineers will have access

to the latest system updates. This leaves less room for error and reduces risks.

Although MBSE is a relatively new concept that is gaining more attention from the

systems engineering community, RID has been in practice over many decades.

 Perez 9

Document-Centric Model-Centric

Documents are physically collected Documents derived from a single model

Drawings are independent of each other Views are consistent with each other

Diagrams exhibit static behavior Diagrams exhibit executable and dynamic
behavior

Data is stored across multiple locations
and mediums Data is stored in a linked repository

System views are stored System views are dynamically generated

Process is ad hoc with inconsistent results Process is repeatable with consistent
results

Changes are manually propagated across
all affected system items

Changes are automatically propagated
across all affected system items

Table 1. Document-Centric Versus Model-Centric System Engineering6

 RID is a conscious engineering effort to buy down risks on a system by making

informed design trades during system design and throughout the lifecycle.7 It assumes

risk is a design commodity to be traded -- similar to mass, thrust, size or power -- rather

than a result of the design.8 Risk is often thought of in three components: scenarios,

likelihoods and consequences.9 Risk can also be broken down quantitatively into a

probabilistic value as a success or failure criteria. For spaceflight missions, there is

special interest in understanding the probability of the loss of crew (pLOC), loss of

mission (pLOM) and/or loss of vehicle (pLOV). These probabilities are determined by

assessing the probabilities of contributing failure events caused by the components that

decompose a system and/or environmental factors such as Micrometeoroids & Orbital

Debris (MMOD) or Galactic Cosmic Radiation (GCR).

 Perez 10

 The RID process aims to identify these risks early in the development cycle to

make effective modifications to a system as it evolves into a deliverable product without

blindly and unnecessarily applying risk reduction solutions (i.e. “make everything

redundant and hope for the best”). However, the analysis tools, personnel and other

resources required to apply RID are typically out of reach for system engineers during

early development. In traditional projects, separate tools such as Relex, Windchill and

SAPHIRE are used to perform risk assessments. The results of these analyses can

sometimes have a dramatic impact on system design that may fail to effectively

propagate to all affected components. MBSE CAD tools such as Innoslate can assist

system engineers to expedite the RID process by integrating the failure analysis into the

system architecture model, enabling early risk assessment and efficient tracking and

updating of risks throughout the lifecycle.

 Innoslate is a cloud-based MBSE CAD tool developed by Systems & Proposal

Engineering Company (SPEC) Innovations led by Cynthia Mahugh-Dam and Dr. Steven

Dam.10 Innoslate implements a Lifecycle Modeling Language (LML) that captures the

technical and programmatic constructs of a system. LML combines the logical

constructs of SysML with the ontology of DoDAF Metamodel 2.0 (DM2).11 The technical

constructs can be broken up into model entities such as Actions, Assets, Artifacts,

Characteristics and/or Statements. The programmatic constructs can also be broken

down into entities such as Cost, Schedule, Risk and/or Time.

 The fundamental power of this tool and most other MBSE tools, such as CORE

or CRADLE, is the ability to create direct relationships within the entities of the model.

This enables efficient tracking of system requirements and the automatic propagation of

 Perez 11

changes made to the model. System engineers receive immediate feedback on

changes implemented on the model.

 Innoslate provides some unique capabilities when compared to other MBSE tools

such as having an online data repository for artifacts, the ability to concurrently update

the model and providing commentary feedback to specific entities in the model that can

be viewed as a report. It is also platform independent, meaning that the tool can be

used on a Mac or PC. Innoslate also offers readily available templates that can be

imported into the model. These templates include DoDAF, CONOPS, WBS, JCIDS,

MODAF and others. This research paper uses Innoslate as the primary tool to

implement failure analysis on a basic system model with further extension to the Altair

project.

 Perez 12

MBSE RID PROCESS

Figure 1. MBSE RID Process Flow Diagram

 Perez 13

 This section describes the process of applying MBSE to RID methods. It uses a

minimum functionality RID approach and applies it to a basic generic system model

developed using Innoslate. Each step in the process is described with general notes,

assumptions and diagrams to guide the reader. Figure 1 depicts the MBSE RID process

step-by-step and it is discussed in detail in this section.

MBSE RID Process:

1) Develop Minimum Functionality System Architecture Model

2) Develop Failure Event Architecture

3) Establish Relationships Between Failure Event & System Architecture

4) Assign Fixed Failure Probabilities to Components

5) Perform Initial Analysis & Validate Results

6) Apply Random Distribution Failure Probabilities

7) Analyze

8) Review

9) Identify Enhancements for pLOC/pLOM/pLOV

10) Update Architecture Model

11) Repeat Steps 7 to 10

 Perez 14

Develop Minimum Functionality System Architecture Model

 The MBSE RID process starts with the development of a system architecture

model that includes the physical and functional constructs of a minimally functional

system. For this research paper, the functional constructs are omitted for simplicity.

Figure 2 depicts the physical architecture built in Innoslate. The model is generic and

uses simple designations that can be very helpful later as the model gets more complex.

The designations do not follow any particular standard. Innoslate has a built-in capability

that can conveniently search for the designations when building diagrams or

establishing relationships.

Figure 2. System f1 Hierarchy Chart

 Perez 15

Develop Failure Event Architecture

 After the system architecture model is built, the engineering team reviews the

model to identify any potential failure events that the system may produce. For simplicity,

the research paper identifies 1-for-1 failure events for each of the components and

systems identified. For example, Component b1 performs a Failure Event of Component

b1 and System f1 performs a Failure Event of System f1. Multiple failure events can be

identified and captured by the model from a single component.

 Once the failure events have been identified, it is then placed into the model as

an independent architecture, which is essentially a fault tree diagram. While the physical

architecture entities are “Assets”, functional and failure event architecture entities are

“Actions”. At the bottom of any failure event architecture are the failures produced by

the components that comprise the system. In general, the failure of any system is

determined by the failure its components. There are environmental factors to consider

as well, but this research paper does not account for those factors. A SimScript program,

similar to JavaScript, embedded into each of the logic entities generates the

probabilities. The user embeds the SimScript. Appendix I provides more information on

the details of the SimScript. Figure 3 depicts a sample of the failure event model for

System f1 that is broken down to the bottom level where the failure probabilities are

generated.

 The Hierarchy Diagram view of the failure event architecture provides a better

perspective of the relationships between each of the events; however, the views are too

large to view in this document. The physical hierarchy chart in Figure 2 provides a

 Perez 16

similar view, but does not include the logic gates. Appendix I provides information on

how to access to Innoslate model if there is independent interest to view the entire

model. Although the logic entities in Figure 3 show an “OR” description, the SimScript

may actually implement an AND logic function instead. It is recommended to add a brief

descriptive note on each of the logic entities to make the distinction (i.e. FG.OR,

FG.AND) as shown in Figure 3.

 Perez 17

Figure 3. System f1 Failure Event Architecture Breakdown Action Diagram

 Perez 18

Establish Relationships Between Failure Event & System Architecture

 The failure event architecture was previously built separately from the physical

model. Now relationships can be established between the two architectures by linking

each component and system to its respective failure event. This is accomplished by

going into each of the model assets and adding a link in the “performs Action”

relationship. Figure 4 shows the “performs Action” entity location with a red arrow. This

can be accomplished vice versa from the action entity, but the relationship is instead

called “performed by”.

 With relationships established, changes can be tracked and updated

automatically without having to go into every affected entity in the model. An interesting

view to use is the “spider diagram”. Figure 5 depicts the spider diagram for System f1

and includes a color legend for easier tracking. This figure shows how the model

elements are related and traced to each other. It is broken down to 3 levels, but can be

broken down further up to 9 levels. For complex architectures, high levels may become

difficult to interpret.

 Perez 19

Figure 4. System f1 Asset Entity View

 Perez 20

Figure 5. System f1 Traceability Spider Diagram

Legend
Blue = System
Green = Subsystem
Red = Component
Orange = Failure Event

 Perez 21

Assign Fixed Failure Probabilities to Components

 To ensure that the model is built correctly, it is recommended to first assign fixed

failure probabilities to each of the components before adding any kind of “noise”, or

random distribution, to the values. The probability values assigned to the components in

this research paper are generic and arbitrary. There are several resources that can be

used to determine a probability value such as “Probabilistic Risk Assessment

Procedures Guide for NASA Managers and Practitioners”, “NASA Risk-Informed

Decision Making Handbook” or “Human Spaceflight: Mission Analysis And

Design”.12,13,14 In general, for first-cut analysis, most failure probabilities are adopted

from legacy or similar systems. Engineers also use reasonable judgment based on their

personal experience. Determining failure probabilities is a process all in itself and it is

not addressed in this research paper.

 Figure 6 depicts the failure probability assignments for each of the components

(Highlighted in Yellow) and the resulting system failure calculations performed in

Microsoft Excel. Note that the numbers defined are actually probability of success

values that are used to better compare results with the Innoslate analysis. To determine

the actual failure probability, subtract the probability value from 1. For example, if

pSuccess of f1 = 0.608 (Shown in Figure 6), then pFail of f1 = 1 – 0.608 = 0.392.

 Perez 22

Figure 6. System f1 Failure Probability Assignment & Calculation

 Perez 23

Perform Initial Analysis & Validate Results

 The Excel calculation in Figure 6 should only be performed for simpler parts of

the model to be able to validate the results from Innoslate. As the model becomes more

complex and noise is introduced into the probabilities, it will be become a very laborious

effort to work out the calculation. This paper continues to crunch this calculation for

other parts of the process to show the reader that the manual calculation agrees with

the Innoslate analysis.

For OR logic functions, the following equation is applied:

[x1 * x2 * x3 …]

For AND logic functions, the following equation is applied:

[1 – (1 – x1) * (1 – x2) * (1 – x3) …]

The SimScript uses the respective logic operators to implement the function:

[OR = ||] [AND = &&]

 The next task is to perform the failure analysis in Innoslate. Using the Action

Diagram for the System f1 Failure Event, a Monte Carlo Simulation can be performed in

order to quantitatively assess the failure probability of System f1. Run the simulation

and view the graphical results. Note that the Monte Carlo simulation function is not part

of the free package and requires a Professional subscription plan. The Monte Carlo

simulation runs 100 iterations maximum of the failure events and it is performed using

cloud-based computing. When evaluating the results, look at the percentage of

simulations that passed and failed in the bar graph on the right. During each iteration

count, passing events add time to the simulation through the use of the “No Failure”

entities while failure events add no time through the use of the “Failure” entities.

 Perez 24

Therefore, simulations that passed will accumulate in the bar with the longest time on

the extreme right of the bar graph.

 Any failure in the event chain over the 100 iterations will show a shorter time on

the left of the graph, meaning if the user were to add up the bars on the left, it would

add up to the failure probability, while the extreme bar on the right adds up the success

probability. Appendix II provides more information on Innoslate’s Monte Carlo simulation

and how it can be optimized to sum up the failure bars into a single bar. Figure 7 depicts

Monte Carlo simulation graph generated by Innoslate. The graph on the left and the

duration numbers on top can be ignored. The results of the Innoslate analysis show

probability of success to be 0.60 (60%) while the results of the Excel spreadsheet in

Figure 6 showed 0.608, an error of only 0.008. The number determined from the graph

is “eyeballed” to the y-axis labels. Innoslate is working on an update to allow users to

hover-over the bar to see an exact number as can be done with the graph on the left.

Users will also notice that the analysis results will fluctuate up or down by a few percent.

Unfortunately, there are not enough iteration counts to give an accurate result

consistently. The simulation function is still experimental, but the Innoslate team is

working on perfecting the simulation and providing more capability to the user

community.

 Perez 25

Figure 7. System f1 Innoslate Failure Analysis

 Perez 26

Apply Random Distribution Failure Probabilities

 Applying random distribution to failure probabilities is an advantageous capability

offered by Innoslate through SimScripting. During system design, determining the exact

failure probability of a component is often difficult to obtain and because of its statistical

nature, can never be truly ascertained. There are space missions that have been short-

lived and ones that have far exceeded its predicted lifetime. Therefore, variations need

to be implemented on each of the assigned failure probabilities to “shake-up” the

analysis and determine if the design still meets criteria. ‘Math.random()’ is a JavaScript

function that returns a floating-point, pseudo-random, and non-uniform distribution

number between the number 0 and 1 that is inclusive of the number 0, but exclusive of

the number 1.15,16 With this function, variations can be applied to each of the failure

probabilities defined for the components. Figure 8 depicts the SimScript function for

Component a1 with a red arrow where the function is applied. Note that there is another

‘math.random’ function in the script, but this is used to randomly decide if the

component fails or passes while the ‘probOfSuccess’ (Red Arrow in Figure 8) sets the

threshold. The component fails every time the random number is generated below

‘probOfSuccess’, in this case 0.9. Appendix I provides more information on the

SimScript. Adding a ‘math.random’ function to the ‘probOfSuccess’ variable will vary the

failure threshold at every iteration count of the Monte Carlo simulation. The threshold

essentially becomes a moving target. The following distribution equation is implemented

to ‘probOfSuccess’ for Component a1:

var probOfSuccess = Math.random()*(0.95-0.85)+0.85;

 Perez 27

 The distribution equation above will vary ‘probOfSuccess’ from 0.85 to 0.95, or ±

5% from 0.9. If ± 5% variation was implemented on all components of System f1 (i.e.

Component a1, a2, b1, b2), the failure probability of System f1 should vary

approximately ± 10%. This distribution is applied to the System f1 model in this research

paper. Table 2 shows the results of 5 Monte Carlo simulation runs, which is equivalent

to 500 iteration counts. It is interesting to note that although variation was shown in

each run, over all the runs, the final average was approximately the fixed results from

Figure 6 and 7. This is a contribution of the non-uniform distribution of the random

function. Although the average eventually works itself out to the fixed value, the

standard deviation becomes a valuable number to account for because it gives the user

an indication of how much the failure probability varies from the mean.

 Perez 28

Figure 8. Component a1 Innoslate Failure Probability SimScript

Table 2. System f1 Monte Carlo Runs With Distribution Applied

 Perez 29

Analyze, Review, Identify Enhancements for pLOC/pLOM/pLOV & Update
Architecture Model

 The next step is an iterative cycle of analysis, review, identification and updates.

The design team, subject matter experts and relevant stakeholders typically participate

in this process. This research paper does not detail this process, but the documents

identified in the “Assign Fixed Failure Probabilities to Components” section provide

more information.17,18 This research paper, however, continues the process by providing

2 arbitrary updates to the model shown in Figure 2 that can be applied to pLOC, pLOM

or pLOV analysis scenarios. For simplicity, random distribution is not used for the

updates and the distribution values identified in the previous section have been reset to

fixed values.

 Figure 9 shows the summary of the first set of updates for System f0 with the

addition of Subsystem c0. The Excel calculation resulted in a probability of success of

0.731 (pFail = 0.269) while the Innoslate simulation resulted in 0.73 (pFail = 0.27).

Figure 10 shows the summary of the second set of updates for System f0 with the

addition of Subsystem d0. The Excel calculation resulted in a probability of success of

0.925 (pFail = 0.075) while the Innoslate simulation resulted in 0.93 (pFail = 0.07). Table

3 summarizes the Innoslate simulation results across the 3 phases shown in this section.

 Figure 9 and 10 demonstrates that although the reliability of the system improved

significantly (+0.33), it came at the sacrifice of additional complexity to the system that

typically results higher in costs, longer schedules, higher mass, larger volume, more

electrical power and/or extra resources. In the long run, a program saves money

because this process is a conscious effort to add only the essential assets for a

 Perez 30

successful mission, not a blind effort that adds complexity with insignificant impact to

safety and reliability. The conscious effort also helps engineers identify and track the

key drivers of system safety and reliability that can be addressed in a timely manner.

Table 3. System f0 Innoslate Failure Analysis Summary

 Perez 31

Figure 9. System f1 Update 1

 Perez 32

Figure 10. System f1 Update 2

 Perez 33

ALTAIR DESIGN REFERENCE EXAMPLE

 The Altair lunar lander was comprised of four major components, which were an

Ascent Module (AM), a Descent Module (DM), an Airlock and an Ares V Earth

Departure Stage/Altair Adapter (EDSA).19 The Altair design implemented a RID process

comprised of four phases called Lander Design Analysis Cycles (LDAC). LDAC-1, or

the first phase, provided a “minimum functionality” baseline vehicle. This is a stripped

down vehicle that performed only the very basic functions to accomplish the mission.20 It

did not account for any safety or reliability requirements for the mission or crew.

 In LDAC-2, engineers essentially “bought back” crew safety to enhance pLOC

primarily at the cost of mass. Added capabilities to the vehicle to improve pLOC

included abort functions, redundant O2 tanks, and an emergency communication

system, among other capabilities.21,22 Engineers were careful to include only capabilities

that were necessary to significantly improve pLOC. There is a common intuition within

engineers that adding redundancy is always the most effective method of improving

safety and reliability in a system. However, a critical lesson learned during that Altair

analyses was that “full redundancy was usually the most massive and frequently not the

most effective option for improving LOC.” 23 Because this is not always the case, it

challenges engineers to come up with creative solutions that do not use redundancy.

For example, an abort function is not a redundant item; however, it greatly enhances the

safety of a system. Another example is adjusting the flight trajectory to one that is safer

for humans, which is also a non-redundant item.

 Perez 34

 In LDAC-3, engineers bought back mission reliability to enhance pLOM, also

primarily at the cost of mass. Added capabilities to the vehicle to improve pLOC

included manual circuit breakers for the power distribution unit, changing the DM and

Airlock primary structures to composites, and adding another O2 tank, among other

capabilities. 24 The design continued to LDAC-4 with very small increments of

enhancements with natural design maturation, but nothing more was documented after

LDAC-4 as program activity eventually halted due to the cancellation of Constellation.

 As discussed earlier in the Develop Failure Event Architecture section, at the

bottom of any failure event architecture are the failures produced by the components

that comprise the system. The results of the failure analysis are only as good as the

probabilities assigned to each of the components, whether it is a fixed value or a

distribution, therefore, “garbage in equals garbage out”. Appendix IV provides an

example of how probabilities were assigned to the components of the Altair lunar lander

system, courtesy of Mr. Randolph Rust at NASA. Due to technical restrictions, the

failure rates are generic and do not represent actual data, however, these numbers are

representative of the probability numbers typically associated with space systems and

their components.

 The “minimum functional” design philosophy was new to large-scale NASA

human spaceflight projects.25 Although incomplete, Altair provided very useful insight to

crew vehicle design that can be applied to future human spaceflight projects. Appendix

III depicts a summary of the Altair lunar lander design changes as it evolved through the

analysis cycles taken from a design lessons paper developed by the Altair design team.

In addition to the RID process, Altair also implemented MBSE to model the system and

 Perez 35

its activities. According to Dr. John Connolly and Mr. Randolph Rust at NASA, the team

used CRADLE as the system architecture-modeling tool; however, the failure analysis

for pLOM was performed on a separate tool called SAPHIRE (Version 7-26), which is

controlled by the Nuclear Regulatory Commission and Idaho National Laboratory, while

the analysis for pLOC was performed using a Microsoft Excel document developed by

Valador Corporation. Fault trees were created using common applications such as

Microsoft Word and PowerPoint. This is a prime example of how this research paper

can enhance RID with MBSE by consolidating the system modeling and failure analysis

effort into a single tool.

 Unfortunately, due to the complexity of the Altair project and the limited

information and time available, this research paper could not develop a complete and

accurate model of the Altair lunar lander using the MBSE method described in this

research paper to replicate the failure probabilities shown in Appendix III and make an

“apples-to-apples” comparison. Instead, this research paper shows a brief example of

how failure events in the Altair Lunar Lander are modeled and simulated through the 3

LDAC phases and how it contributes to pLOC and pLOM.

 Figure 11 shows a sample physical architecture of the lunar lander that starts

from the 4 major, top-level systems down to the O2 tanks of the ECLSS System in the

Ascent Module. O2 Tank 1 is a minimum functionality item needed to keep the crew

alive and accomplish the mission; therefore, it is included in the LDAC-1 analysis and

folds into the pLOC and pLOM failure analysis. The O2 Tanks 2 and 3 are added

successively at each phase of the design cycle as long as the design team deems it

 Perez 36

necessary through peer reviews. In this case, the design team deemed the additional

O2 tanks necessary according to the LDAC assumptions shown in Appendix III.

 For simplicity, the success probability for each of the O2 tanks is arbitrarily set to

0.6 (pFail = 0.4). Since it takes all 3 tanks to fail in order for the ECLSS System to fail,

an AND logic is implemented. Figure 12 summarizes the Innoslate failure analysis

implemented across the 3 design phases. Note the failure rate improvement as it

progresses through the phases, but at the cost of adding new elements to the

architecture resulting in higher in costs, higher mass and larger volume to say the least.

Since there are numerous failure events required to determine pLOC and pLOM, it is

not addressed in this research paper.

 The failure of the O2 tanks in this scenario contributes to both pLOC and pLOM

because not only would the crew not have breathable air that would suffocate them

(pLOC), the lunar lander system would not have the required human inputs to complete

the mission (pLOM). Determining pLOC and pLOM typically requires 2 separate failure

event architectures, or fault trees; however, many of the failure events overlap such as

in the case of the O2 tanks. Innoslate has no issue reusing failure event entities for

multiple architectures, therefore saving engineering design time. However, failure

events within a single architecture must be unique because of the unique variables set

within the SimScripts (i.e. a0Fail, b0Fail, f2Fail, etc.). This section demonstrated how

the MBSE RID process described in this paper is applied to a specific human

spaceflight project.

 Perez 37

Figure 11. Altair Lunar Lander Sample Physical Architecture

 Perez 38

Figure 11. Altair Lunar Lander O2 Tank Failure Events

 Perez 39

LESSONS-LEARNED

 This section highlights some of the lessons-learned in conducting this research

and offers suggestions. In general, many of the lessons-learned were documented in

the MBSE RID Process section. There were many unknowns at the beginning of the

research that were underestimated and that needed to be investigated and worked out.

The list below is not an exhaustive list of lessons-learned, but focuses on the important

ones.

1. As the system and failure event architecture were being developed, reference

designations were being assigned for each of the entities in the “number” field. It

was straightforward at first to just assign designations in some kind of logical

order (i.e. ‘a.0’, ‘a.1’, ‘a.2’), but when changes needed to be made, it was a

difficult task to make changes without ruining the logical order set, especially

when it’s somewhere in the middle of the order. Establish a reference

designation strategy prior to model development. The strategy should be logical

and flexible to allow for changes throughout the process. This can be

implemented for any category of entities (i.e. failure events – FE.0, failure

probability generators – FP.0, failure gates – FG.0, components – C.0, etc.).

 Perez 40

2. In the sea of entities that can be created in the MBSE CAD tool, it became

burdensome to sort the entities of interest for a particular modeling task and keep

track of it. Establish a labeling strategy prior to model development. For small-

scale models, using labels may not provide significant value, but for mid- to

large-scale models, it becomes very useful, almost necessary, to efficiently

manage the model. Innoslate offers a labeling feature that filter entities of a

specific group determined by the user. This feature may not be offered in all

MBSE CAD tools, but it is one to look for and use to improve the model

development experience.

3. It was sometimes taken for granted that the failure event pieces in the model

were setup with the correct configuration, connections and SimScripts. Results

were therefore shown with error. Perform manual calculations of small parts of

the failure event architecture to validate correct operation. This is a sanity check

to ensure that the SimScripts and connections are working properly. Calculations

can be performed with a portable calculator, but it is recommended to use

Microsoft Excel, or any spreadsheet application, to perform the calculations.

 Perez 41

4. One of the main items investigated in this research was the use of the MBSE

CAD tool, Innoslate. The tool provided many great features as mentioned in the

Background Review section. However, Innoslate still has room for improvement.

It is a relatively new program that released its second version over the Summer

2013. The Monte Carlo simulation was considered experimental at the time of

this research. Appendix I provides more details on the use of Innoslate and notes

some of the minor issues experienced. As with any tool, there is a learning curve

to account for, therefore, plan accordingly for some training time. However,

engineers that are savvy with CORE or CRADLE will likely have a much smaller

learning curve since much of the modeling concept and language are very similar.

The SPEC Innovation technical team provides great support in answering

questions, addressing issues and providing training opportunities (i.e. lunch &

learn).

5. A critical lesson-learned taken from the Altair project was that full redundancy is

often not the most effective option for improving failure probabilities. It is quite

instinctive for engineers to simply add redundancy to improve safety and

reliability. No direct examples were shown in this research paper, but this is a

valuable note for engineers to take away and consider for future projects.

 Perez 42

RECOMMENDATIONS

The following are recommendations for potential future research topics that can be

taken up academically or professionally. The specific focus and limited timeline of this

research paper prevented further investigation of these topics.

1. Non-Redundant Methods of Improving Safety & Reliability for Space Systems

a. The Altair project has shown that full redundancy is not always the answer

for enhancing safety and reliability within a system. Some non-redundancy

options were noted such as abort capabilities and flight trajectory

alternatives. Implementing non-redundancy sometimes requires creativity

and ingenuity. The focus of this investigation could be on developing non-

redundant options for space systems by collecting data from legacy and

current systems, identifying common issues and solutions, identifying rare

cases and creating novel approaches. Engineers can benefit by using the

research as a reference guide that can be directly applied to a problem or

as an idea kickstarter. This investigation seeks to answer a fundamental

question, “What non-redundant alternatives for space systems can

engineers implement to improve safety and reliability?”

 Perez 43

2. Application of Dynamic Logic To System Architecture Modeling

a. This research paper only covered static logic (i.e. AND, OR), which can

execute series and parallel configurations in a system. There are other

configurations such as Standby, Cross-linked, On-Demand and more

exotic configurations that cannot be implemented using static logic, but

rather using dynamic logic, which can account for temporal aspects of

failure events. One example of dynamic logic is the use of Priority AND

(PAND) gates, where the order in which the inputs occur matter. This

research paper provides a couple of references on dynamic logic.26,27 The

focus of this investigation could be on developing SimScript or JavaScript

algorithms that can implement dynamic logic and then integrate it into an

MBSE CAD tool to execute time-based failure events such as Standby or

Cross-linked. This can enhance the MBSE RID process by having the

ability to simulate other types of failure events.

 Perez 44

3. MBSE RID Process Failure Probability Analysis Extension Into MTBF Analysis

a. This research paper focused on the quantitative analysis of failure events

based on the failure rates of system components, but it does not translate

any of the analysis for use in MTBF analysis. MTBF is simply a reciprocal

of failure rate and it represents a ratio of total operating time to total

number of failures within that time.28 It is very often used in industry

alongside failure rates. Modern MBSE CAD tools have been slowly

incorporating Reliability, Availability and Maintainability (RAM) capabilities

that can perform this analysis and perhaps bridge this gap. The focus of

this investigation could be on developing algorithms or leveraging MBSE

CAD features to translate failure rates found in this research paper into

MTBF values for use as an alternative method to failure analysis.

4. Application of Alternative Random Distribution Types

a. As discussed earlier, the ‘math.random()’ JavaScript function implements

a pseudo-random and non-uniform distribution. It was difficult to track

down references on the exact nature of the ‘math.random()’ function, but it

would seem to implement a flat (i.e. even, 50/50) distribution, or at least

very close to it, based on the results found in this paper. It would likely be

of great interest to engineers to be able to implement different types of

distribution such as Gaussian, Uniform or Logarithmic. The focus of this

investigation could be on developing algorithms to implement several

types of random distribution to failure rates in MBSE CAD tools.

 Perez 45

CONCLUSION

 The research demonstrated an end-to-end MBSE RID process that was applied

to a basic system model and a sample of the Altair lunar lander system. The process

streamlines the effort of system architecture modeling and failure analysis that offer

system engineers a cost-effective advantage of conducting RID early in the design cycle.

Once the model is developed during the design phase, it becomes an iterative process

of review and updates that extends throughout the entire lifecycle of a system. MBSE

CAD tools enhance the experience of executing the process.

 The research also demonstrated that MBSE in general, and Innoslate specifically,

is capable of providing an integrated, effective and quantitative means of developing a

risk-informed system design using a minimum functionality baseline process. This can

be applied to human and robotic spaceflight systems and other systems with similar

complexity. As with any engineering analysis tool, engineers should never use the

results of an analysis as the sole justification to make a decision, however, the results

can be used as a focal point in technical discussions. The Altair RID process also

exercised this philosophy. Although Innoslate was the prime MBSE tool used, there are

other tools that may provide similar functionality.

 Furthermore, the research demonstrated that random distributions could be

added to failure probabilities in order to add “noise” to the results, a task that can be

laborious, if not impossible, if performed using a portable calculator or spreadsheet.

Because of the statistical nature of failure events, adding distributions to component

failure rates help ensure that systems still meet criteria over a determined variation.

 Perez 46

Prior to adding distributions, the model should be validated first by using fixed values to

ensure that the model is setup correctly.

 With space systems continuously evolving and becoming more complex every

day, engineers are struck with the need to continuously develop tools to address the

challenging environment and provide effective solutions to mitigate technical and

programmatic risks. Tools and processes are only as effective as the people who use it;

therefore, engineers must continuously seek professional development not only for

personal growth, but also for the growth of the state-of-the-industry. In a climate of

shrinking budgets and increasing technical demands, the MBSE RID Process described

in this research proposes a feasible alternative to risk management during system

design, development and deployment.

 Perez 47

ENDNOTES

 1 Kate Gartside, The Challenger Disaster, Directed by James Hawes, Performed
by William Hurt, Science Channel, 2013.

 2 Boeing, "Space Shuttle:Backgrounder," Boeing, June 2011,
http://www.boeing.com/assets/pdf/defense-
space/space/hsfe_shuttle/docs/shuttle_overview.pdf (accessed December 03, 2013).

 3 NASA, "Probabilistic Risk Assessment Procedures Guide for NASA Managers
and Practitioners," NASA, December 2011,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369_2012001000.pdf
(accessed December 03, 2013): 1-1.

 4 INCOSE, "Systems Engineering Vision 2020," INCOSE. September 2007,
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
(accessed December 03, 2013): 15.

 5 Vitech Corporation, "Model-Based Systems Engineering," INCOSE, September
2011, http://www.incose.org/chesapek/Docs/2011/Presentations/2011_09_17_Model-
Based%20SystemsEngineeringPublicSlides.pdf (accessed December 03, 2013): 37.

 6 Ibid.

 7 George Deckert, "Risk Informed Design as Part of the Systems Engineering
Process," NASA, October 2010,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100037185_2010038869.pdf
(accessed December 03, 2013), 2.

 8 Ibid, 3

 9 NASA, "NASA Risk-Informed Decision Making Handbook," NASA, April 2010,
http://www.hq.nasa.gov/office/codeq/doctree/NASA_SP2010576.pdf (accessed
December 03, 2013): 11.

 10 Systems and Proposal Engineering Company, Leadership Team, 2013,
http://www.specinnovations.com/leadership-team (accessed December 03, 2013).

 11 Steven H. Dam, Lifecycle Modeling – Application to Architecture Development,
October 2011, http://www.dtic.mil/ndia/2011system/13130_DamThursday.pdf (accessed
December 03, 2013): 7.

 12 NASA, "Probabilistic Risk Assessment Procedures Guide for NASA Managers
and Practitioners," NASA, December 2011,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369_2012001000.pdf
(accessed December 03, 2013).

 Perez 48

 13 NASA, "NASA Risk-Informed Decision Making Handbook," NASA, April 2010,
http://www.hq.nasa.gov/office/codeq/doctree/NASA_SP2010576.pdf (accessed
December 03, 2013).

 14 Heydorn, Richard P., and Jan W. Railsback, "Safety of Crewed Spaceflight," In
Human Spaceflight: Mission Analysis And Design, by Wiley J. Larson, Linda K. Pranke,
John Connolly and Robert Giffen, The McCraw-Hill Companies, 2000: 193.

 15 Mozilla Developer Network, Math.random(), 2013,
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Math/random (accessed December
03, 2013).

 16 W3Schools, JavaScript random() Method, 2013,
http://www.w3schools.com/jsref/jsref_random.asp (accessed December 03, 2013).

 17 NASA, "Probabilistic Risk Assessment Procedures Guide for NASA Managers
and Practitioners," NASA, December 2011,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369_2012001000.pdf
(accessed December 03, 2013).

 18 NASA, "NASA Risk-Informed Decision Making Handbook," NASA, April 2010,
http://www.hq.nasa.gov/office/codeq/doctree/NASA_SP2010576.pdf (accessed
December 03, 2013).

 19 Lauri Hansen, and John Connolly, The Altair Design And Minimum
Functionality Approach, NASA, International Astronautical Congress, 2008: 2.

 20 Ibid, 3.

 21 Ibid, 4.

 22 John Connolly, Robert L. Bayt, and James H. McMichael, Human Planetary
Spacecraft Design Lessons, NASA, International Astronautical Congress, 2010: 2.

 23 Lauri Hansen, and John Connolly, The Altair Design And Minimum
Functionality Approach, NASA, International Astronautical Congress, 2008: 7.

 24 John Connolly, Robert L. Bayt, and James H. McMichael, Human Planetary
Spacecraft Design Lessons, NASA, International Astronautical Congress, 2010: 2.

 25 Lauri Hansen, and John Connolly, The Altair Design And Minimum
Functionality Approach, NASA, International Astronautical Congress, 2008: 4.

 Perez 49

 26 Jianwen Xiang, Fumio Machida, Kumiko Tadano, Kazuo Yanoo, Wei Sun, and
Yoshiharu Maeno, "A Static Analysis of Dynamic Fault Trees with Priority-AND Gates,"
NEC, 2013, http://www.nec.com/en/global/rd/labs/lasd/image/ladc2013-jianwen.pdf.

 27 Jun Ni, Wencheng Tang, and Yan Xing, "A Simple Algebra for Fault Tree
Analysis of Static and Dynamic Systems," IEEE, October 2013,
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6632939&url=http%3A%2F%2Fie
eexplore.ieee.org%2Fiel7%2F24%2F4378406%2F06632939.pdf%3Farnumber%3D663
2939 (accessed December 03, 2013).

 28 Ken Neubeck, Practical Reliability Analysis, Upper Saddel River, NJ: Pearson
Education, 2004: 2, 3.

Perez 50

LIST OF REFERENCES

	

Boeing. "Space Shuttle:Backgrounder." Boeing. June 2011.

http://www.boeing.com/assets/pdf/defense-
space/space/hsfe_shuttle/docs/shuttle_overview.pdf (accessed December 03,
2013).

Connolly, John, Robert L. Bayt, and James H. McMichael. Human Planetary Spacecraft
Design Lessons. NASA, International Astronautical Congress, 2010.

Dam, Steven H. Lifecycle Modeling – Application to Architecture Development. October
2011. http://www.dtic.mil/ndia/2011system/13130_DamThursday.pdf (accessed
December 03, 2013).

Deckert, George. "Risk Informed Design as Part of the Systems Engineering Process."
NASA. October 2010.
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100037185_2010038869.
pdf (accessed December 03, 2013).

Gartside, Kate. The Challenger Disaster. Directed by James Hawes. Performed by
William Hurt. Science Channel, 2013.

Hansen, Lauri, and John Connolly. The Altair Design And Minimum Functionality
Approach. NASA, International Astronautical Congress, 2008.

Heydorn, Richard P., and Jan W. Railsback. "Safety of Crewed Spaceflight." In Human
Spaceflight: Mission Analysis And Design, by Wiley J. Larson, Linda K. Pranke,
John Connolly and Robert Giffen. The McCraw-Hill Companies, 2000.

INCOSE. "Systems Engineering Vision 2020." INCOSE. September 2007.
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
(accessed December 03, 2013).

Mozilla Developer Network. Math.random(). 2013. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Math/random (accessed
December 03, 2013).

Neubeck, Ken. Practical Reliability Analysis. Upper Saddel River, NJ: Pearson
Education, 2004.

NASA. "NASA Risk-Informed Decision Making Handbook." NASA. April 2010.
http://www.hq.nasa.gov/office/codeq/doctree/NASA_SP2010576.pdf (accessed
December 03, 2013).

 Perez 51

NASA. "Probabilistic Risk Assessment Procedures Guide for NASA Managers and
Practitioners." NASA. December 2011.
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369_2012001000.
pdf (accessed December 03, 2013).

Ni, Jun, Wencheng Tang, and Yan Xing. "A Simple Algebra for Fault Tree Analysis of
Static and Dynamic Systems." IEEE. October 2013.
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6632939&url=http%3A%2
F%2Fieeexplore.ieee.org%2Fiel7%2F24%2F4378406%2F06632939.pdf%3Farn
umber%3D6632939 (accessed December 03, 2013).

Systems and Proposal Engineering Company. Leadership Team. 2013.
http://www.specinnovations.com/leadership-team (accessed December 03, 2013).

Vitech Corporation. "Model-Based Systems Engineering." INCOSE. September 2011.
http://www.incose.org/chesapek/Docs/2011/Presentations/2011_09_17_Model-
Based%20SystemsEngineeringPublicSlides.pdf (accessed December 03, 2013).

W3Schools. JavaScript random() Method. 2013.
http://www.w3schools.com/jsref/jsref_random.asp (accessed December 03,
2013).

Xiang, Jianwen, Fumio Machida, Kumiko Tadano, Kazuo Yanoo, Wei Sun, and
Yoshiharu Maeno. "A Static Analysis of Dynamic Fault Trees with Priority-AND
Gates." NEC. 2013. http://www.nec.com/en/global/rd/labs/lasd/image/ladc2013-
jianwen.pdf.

 Perez 52

APPENDIX I: INNOSLATE MODELING

 Figure 12 depicts a graphic overview of how to develop a physical architecture

using “Assets” in Innoslate. In the same manner, a functional architecture can be

developed, however, “Action” entities are used instead of “Assets”.

 Figure 13 & 14 show a “Database” view of all the generic failure event entities

developed in this research paper, which comprises the entire failure event

architecture.

 Figure 15 depicts a breakdown structure of the System f0 failure architecture

down to Component a1 in an “Action Diagram” view (Similar to Figure 3). When

creating the ‘OR’ action entities that implement SimScript routines, it is best to

create it in the “Action Diagram” view (See graphic below).

 Figure 16 represent “Failure” and “No Failure” time path entities. These are

important to include in every failure architecture model where a logic gate exists.

While a failure adds no time to the simulation, a no-failure adds time (1 hour).

Simulation iterations that fully pass will accumulate as the longest time in the

Monte Carlo bar graph.

 Perez 53

APPENDIX I: INNOSLATE MODELING

Innoslate Modeling Figure Notes

 Figure 17 depicts the Failure Event Architecture Hierarchy View for System f0.

Although difficult to view in this document, it can provide a general sense of the

structure.

 Table 4 & 5 show all the SimScript details for the failure gate and probability

entities that require it.

o User-Defined Variables (In Green):

 var probOfSuccess = #.#; --- Set Success Rate

 globals.put(“refdesFail”, “true”); --- Set Reference Designation

Variable

 globals.get(“refdesFail”) --- Retrieves Variable Set

 var probOfSuccess = Math.random()*(max-min)+min; --- Set

Random Distribution with Minimum and Maximum Range Values

 Warning! Unless the user is savvy with JavaScript, it
is recommended to leave all other lines as-is unless
adding more global variables or updating the logic
operators

o AND Logic Operator = &&

o OR Logic Operator = ||

o AND & OR logic operators can be combined within a single script, but may

be difficult to track externally within the model since scripts are buried

within the entities

 Perez 54

APPENDIX I: INNOSLATE MODELING

Figure 12. Developing Assets Using Innoslate

 Perez 55

APPENDIX I: INNOSLATE MODELING

Figure 13. Innoslate Failure Event & Gate Entities

 Perez 56

APPENDIX I: INNOSLATE MODELING

Figure 14. Innoslate Failure Probability Entities

 Perez 57

APPENDIX I: INNOSLATE MODELING

Figure 15. Developing Failure Architecture Using Innoslate

 Perez 58

APPENDIX I: INNOSLATE MODELING

Figure 16. Failure/No-Failure Time Path Entities

 Perez 59

APPENDIX I: INNOSLATE MODELING

Figure 17. System f0 Failure Event Architecture Hierarchy View

 Perez 60

APPENDIX I: INNOSLATE MODELING

FG.OR - Subsystem Gate (a0) FG.AND - Subsystem Gate (b0)

function onEnd()
{

 if(globals.get("a1Fail") ||
 globals.get("a2Fail"))

 {
 globals.put("a0Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 if(globals.get("b1Fail") &&
 globals.get("b2Fail"))

 {
 globals.put("b0Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

FG.OR - Subsystem Gate (c0) FG.AND - Subsystem Gate (d0)

function onEnd()
{

 if(globals.get("c1Fail") ||
 globals.get("c2Fail") ||
 globals.get("c3Fail"))

 {
 globals.put("c0Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 if(globals.get("d1Fail") &&
 globals.get("d2Fail") &&
 globals.get("d3Fail"))

 {
 globals.put("d0Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

Table 4A. Failure Gate Entity SimScript Summary A

 Perez 61

APPENDIX I: INNOSLATE MODELING

FG.OR - Subsystem Gate (f1) FG.AND - Subsystem Gate (f2) FG.AND - Subsystem Gate (f0)

function onEnd()
{

 if(globals.get("a0Fail") ||
 globals.get("b0Fail"))

 {
 globals.put("f1Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 if(globals.get("c0Fail") &&
 globals.get("d0Fail"))

 {
 globals.put("f2Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 if(globals.get("f1Fail") &&
 globals.get("f2Fail"))

 {
 globals.put("f0Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

Table 4B. Failure Gate Entity SimScript Summary B

 Perez 62

APPENDIX I: INNOSLATE MODELING

FP - Component (a1) FP - Component (a2)

function onEnd()
{

 var probOfSuccess = 0.9;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("a1Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 var probOfSuccess = 0.9;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("a2Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

FP - Component (b1) FP - Component (b2)

function onEnd()
{

 var probOfSuccess = 0.5;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("b1Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 var probOfSuccess = 0.5;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("b2Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

Table 5A. Component Failure Probability Entity SimScript Summary A

 Perez 63

APPENDIX I: INNOSLATE MODELING

FP - Component (c1) FP - Component (c2) FP - Component (c3)

function onEnd()
{

 var probOfSuccess = 0.9;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("c1Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 var probOfSuccess = 0.7;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("c2Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 var probOfSuccess = 0.5;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("c3Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

FP - Component (d1) FP - Component (d2) FP - Component (d3)

function onEnd()
{

 var probOfSuccess = 0.5;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("d1Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 var probOfSuccess = 0.3;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("d2Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

function onEnd()
{

 var probOfSuccess = 0.2;
 var probOfFailure = 1 - probOfSuccess;
 var randomNumber = Math.random();

 if(randomNumber < probOfFailure)
 {
 globals.put("d3Fail", "true");
 return "Yes";
 }

 else
 {
 return "No";
 }

}

Table 5B. Component Failure Probability Entity SimScript Summary B

 Perez 64

APPENDIX I: INNOSLATE MODELING

Innoslate Modeling General Notes

1. Unable to duplicate an action entity within the same class (i.e. duplicating an OR

action entity does not duplicate to an OR entity, but rather a basic action entity)

or to change the action entity type

2. For security reasons, Innoslate denies read and write access to its program

scripts. Users only have access to global variable sets. There are no limits to

how many variables can be set and are reset after every simulation.

3. Innoslate limits to 200 entities in a model. Be sure to clear out un-needed

simulation runs to keep the model clean and free.

4. Avoid using the same failure entity twice in the same architecture chain. An

anomaly was observed when a Monte Carlo simulation was performed and an

infinite loop was detected. This will force the user to eventually delete and

recreate the entity, but not for its related entities. The loop did not happen for

every case.

5. Minor issues have been observed with the type of browser used, but this is

typically resolved either with an update to the browser by the user or the

Innoslate software by the SPEC team

6. Although Innoslate uses cloud-computing, slower performance was noticed after

running many Monte Carlo simulations from the personal computer processor

and hard drive storage also gets eaten away

 Perez 65

APPENDIX I: INNOSLATE MODELING

Innoslate Links

 https://innoslate.com/

 https://innoslate.com/features/tour/overview/

 https://innoslate.com/help/

 https://innoslate.com/wp-content/uploads/2012/08/Using-Innoslate-for-

Operations-and-Support-OS.pdf

JavaScript Links

 http://www.w3schools.com/js/

For Read-Only access to the system architecture model described in this

paper, please sign-up for an Innoslate account at https://innoslate.com/ and

send an e-mail to the author at rmperez88@gmail.com. Be sure to include

the e-mail used in the Innoslate account.

 Perez 66

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION

Innoslate Monte Carlo Simulation Figure Notes

 Figure 18 depicts a graphic overview of how to run Monte Carlo simulations in

Innoslate. The computation time varies depending on the complexity of the model

and it is performed in the Cloud. The bar graph at the end summarizes the

iterations that failed or succeeded over 100 counts. Each success iteration

accumulates in the single, extreme right bar, while each failure iteration

accumulates on any of the bars on the left. Remember that the “Failure” entities

add no time to the simulation while the “No Failure” entities add time (In this

model, +1 Hour). The results in Figure 18 shows that there were 92% (0.92)

success iterations over 100 passes, while there were 8% (0.08) failure iterations

over 100 passes. These values represent the failure rate of that particular system.

 Figure 19 shows how to retrieve Monte Carlo simulation artifacts from the model

after the simulation has been closed out. Every simulation performed in Innoslate

automatically creates an artifact in the model. By default, artifacts automatically

get assigned a name with a time stamp (i.e. “Monte Carlo 2013-12-06 05:12:15

AM”). It is recommended to rename the artifact to something more logical and

flexible to allow for easier tracking and updating as the model grows.

 Perez 67

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION

 Figure 20 shows an optional way of consolidating the failure bars of the Monte

Carlo simulations. For the generic model in this research paper, not many

additional failure bars were generated, however, as the model grows, much more

failure bars are likely to show up. Each failure bar represents a different time in

the sequence of failure events when the system failed, therefore, longer failure

event chains will show more failure bars and the graph may become difficult to

read. Adding a time spacer element with a long duration to only the last “No

Failure” entity in the failure event sequence will push the success bar to a more

extreme time category. This results in the consolidation of the smaller failure time

categories to the left because the graph will not support very large increments.

 Perez 68

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION

Figure 18. Running Monte Carlo Simulations Using Innoslate

 Perez 69

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION

Figure 19. Retrieving Monte Carlo Simulation Artifacts

 Perez 70

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION

Figure 20. System f0 Spacer Time Element Comparison

 Perez 71

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION

Innoslate Monte Carlo Simulation General Notes

 Innoslate limits the iteration count to 100 maximum. They are looking to provide

more flexible iteration options for Monte Carlo simulations. For now, it’s

experimental.

 Innoslate Monte Carlo bar graphs that do not provide exact accumulation

numbers requiring the user to follow the top edge of the bar to the axis. They are

looking to provide a hover-over feature to allow users to view the exact numbers

in the next version.

 When viewing the bar graph for the Monte Carlo analysis, the chat box icon

sometimes blocks the x-axis marking depending on the size and resolution of the

computer display. Smaller displays will tend to block the axis. Users can zoom

out using the browser function to clear it away.

 Users can upload any type of electronic file into “Artifacts”. Innoslate will hold it

as data repository item. Artifacts are treated as any other entity in the model, but

with the additional upload feature, therefore, users can create artifacts just like

other entities and also create relationships to artifacts, a key benefit. Back-up

project files for Innoslate can also be held in artifacts, which comes as a ‘.xml’ file.

 Perez 72

APPENDIX II: INNOSLATE MONTE CARLO SIMULATION

 When running Monte Carlo simulations, the simulation may sometimes seem to

hang-up in the process. If the user waited for several minutes after the simulation

was declared “Success!” with no response and the simulation icon below is still

active, then there may be a chance that the simulation already completed and

generated an artifact. Figure 19 shows how to retrieve artifacts. Keep in mind

that complex models will require more time to simulate. If the user decides to

look for the artifact during a simulation, then the simulation will stop and if not

completed, it will not generate an artifact. The user will be forced to run the

simulation again.

 Perez 73

APPENDIX III: ALTAIR LUNAR LANDER DESIGN CHANGES THROUGH THE
ANALYSIS CYCLES

Notes:

 Taken from the following source:

John Connolly, Robert L. Bayt, and James H. McMichael, Human Planetary
Spacecraft Design Lessons, NASA, International Astronautical Congress, 2010:
2.

♦ Minimally
functional vehicle

♦ Improve LOC risk postureTheme:

Major
Upgrades,
Additions,
Findings:

Expected
Vehicle
Mass:

LOC:

DAC-1 DAC-2 DAC-3 RAC-1&2
♦ Improve LOM risk

posture
♦ Mature

requirements and
assess gaps in
Lander design

♦ Third flight computer

♦ Third IMU, docking
camera backup to star
tracker, and IMU-less
(manual) mode

♦ Manual circuit breakers
in PDUs

♦ Added 3rd life support
O2 tank

♦ Valving, plumbing,
wiring upgrades to all
sub-systems

♦ Changed DM and AL
primary structures to
composites

♦ Changed to autogenous
pressurization on DM

♦ Reviewed and
matured the Altair-
allocated CARD
requirements, C3I
requirements, and
HSIR requirements

♦ Improved fidelity
and expanded the
T/O list

♦ Matured 6 major
variants of the DM
structure and tank
configurations

♦ Added abort capabilities

♦ Updated descent
trajectory / delta v

♦ Redundant suit loop
compressor, O2 sensors,
and O2 tanks

♦ Selected redundancy
within fuel cell stack,
battery, and PDU

♦ Emergency
communications system

♦ Second IMU, star tracker,
and b/u radar electronics

♦ Valving, plumbing, wiring
upgrades to all sub-
systems

♦ N/A

45,524 kg
(no T/O assessments)

(p0905-A)

45,720 kg Base
7,558 kg Threats

(p0905-C)

1 in 196 1 in 256 1 in 277

LOM: Not assessed

DAC-4
♦ Requirement

incorporation
and maturation

♦ Re-close vehicle
design based
upon RAC1&2
requirement
acceptances

♦ Distributed
avionics
replacing
centralized
avionics

♦ Landing loads
assessment and
resizing

1 in 4 1 in 22 1 in 22

In work

44, 900 kg Base
4,400 kg Threats

(p1006-D)

In work

1 in 6

45,000 kg
(no T/O assessments)

45,002 kg
(no T/O assessments)

(p0804-D)

 Perez 74

APPENDIX IV: ALTAIR LUNAR LANDER GENERIC FAILURE RATES

Notes:

 Rate values are arbitrary and unitless
 Table provided courtesy of Mr. Randolph Rust at NASA

 Perez 75

ACRONYMS

AM Ascent Module
CAD Computer-Aided Design
CONOPS Concept of Operations
DAC Design Analysis Cycle
DM Descent Module
DM2 DoDAF Metamodel 2.0
DoDAF Department of Defense Architecture Framework
DTIC Defense Technical Information Center
EDSA Earth Departure Stage/Altair Adapter
ECLSS Environmental Control and Life Support System
FMECA Failure Modes and Effects Criticality Analyses
FE Failure Event
FG Failure Gate
FM Failure Mode
FP Failure Probability
GCR Galactic Cosmic Radiation
IAC International Astronautical Congress
INCOSE International Council on Systems Engineering
JCIDS Joint Capabilities Integration and Development System
LDAC Lander Design Analysis Cycle
LL Lunar Lander
LML Lifecycle Modeling Language
MBSE Model-Based Systems Engineering
MMOD Micrometeoroids & Orbital Debris (MMOD)
MODAF Ministry of Defence Architecture Framework
NASA National Aeronautics and Space Administration
NEC Nippon Electric Company

 Perez 76

pLOC Probability of Loss of Crew
pLOM Probability of Loss of Mission
pLOV Probability of Loss of Vehicle
pLOS Probability of Loss of System
PRA Probabilistic Risk Assessment
RAC Requirements Analysis Cycles
RAM Reliability, Availability & Maintainability
RID Risk-Informed Design
RIDM Risk-Informed Decision Making
RM Risk Management

SAPHIRE Systems Analysis Programs for
Hands-on Integrated Reliability Evaluations

SPEC Systems and Proposal Engineering Company
SysML System Modeling Language
WBS Work Breakdown Structure

